Jupiter’s cloud-level variability triggered by torsional oscillations in the interior

  • Rogers, J. H. The Large Planet Jupiter (Cambridge Univ. Press, 1995).

    Google Scholar 

  • Fletcher, L. N. Cycles of exercise within the Jovian ambiance. Geophys. Res. Lett. 44, 4725–4729 (2017).

    ADS 

    Google Scholar 

  • Stoker, C. R. Moist convection: a mechanism for producing the vertical construction of the Jovian equatorial plumes. Icarus 67, 106–125 (1986).

    ADS 

    Google Scholar 

  • Gierasch, P. J. et al. Commentary of moist convection in Jupiter’s ambiance. Nature 403, 628–630 (2000).

    ADS 

    Google Scholar 

  • Gillett, F. C., Low, F. J. & Stein, W. A. The two.8-14-micron spectrum of Jupiter. Astrophys. J. 157, 925–934 (1969).

    ADS 

    Google Scholar 

  • Westphal, J. A. Observations of localized 5-micron radiation from Jupiter. Astrophys. J. 157, L63–L64 (1969).

    ADS 

    Google Scholar 

  • Giles, R. S., Fletcher, L. N. & Irwin, P. G. J. Cloud construction and composition of Jupiter’s troposphere from 5-μm Cassini VIMS spectroscopy. Icarus 257, 457–470 (2015).

    ADS 

    Google Scholar 

  • Bjoraker, G. L., Wong, M. H., de Pater, I. & Ádámkovics, M. Jupiter’s deep cloud construction revealed utilizing Keck observations of spectrally resolved line shapes. Astrophys. J. 810, 122 (2015).

    ADS 

    Google Scholar 

  • West, R. A. et al. in Jupiter: The Planet, Satellites and Magnetosphere (eds Bagenal, F., Dowling, T. E. & McKinnon, W. B.) 79–104 (Cambridge Univ. Press, 2004).

  • Antuñano, A. et al. Infrared characterization of Jupiter’s equatorial disturbance cycle. Geophys. Res. Lett. 45, 10987–10995 (2018).

    ADS 

    Google Scholar 

  • Antuñano, A. et al. Jupiter’s atmospheric variability from long-term ground-based observations at 5 μm. Astron. J. 158, 130 (2019).

    ADS 

    Google Scholar 

  • Braginsky, S. I. Torsional magnetohydrodynamic vibrations within the Earth’s core and variations in day size. Geomag. Aeron. 10, 3–12 (1970).

    Google Scholar 

  • Hori, Okay., Teed, R. J. & Jones, C. A. Anelastic torsional oscillations in Jupiter’s metallic hydrogen area. Earth Planet. Sci. Lett. 519, 50–60 (2019).

    ADS 

    Google Scholar 

  • Connerney, J. E. P. et al. A brand new mannequin of Jupiter’s magnetic discipline on the completion of Juno’s prime mission. J. Geophys. Res. Planets 127, e2021JE007055 (2022).

    ADS 

    Google Scholar 

  • French, M. et al. Ab initio simulations for materials properties alongside the Jupiter adiabat. Astrophys. J. Suppl. Ser. 202, 5 (2012).

    ADS 

    Google Scholar 

  • Tsang, Y.-Okay. & Jones, C. A. Characterising Jupiter’s dynamo radius utilizing its magnetic vitality spectrum. Earth Planet. Sci. Lett. 530, 115879 (2020).

    Google Scholar 

  • Moore, Okay. M. et al. A fancy dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic discipline. Nature 561, 76–78 (2018).

    ADS 

    Google Scholar 

  • Teed, R. J., Jones, C. A. & Tobias, S. M. The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth Planet. Sci. Lett. 419, 22–31 (2015).

    ADS 

    Google Scholar 

  • Tollefson, J. et al. Adjustments in Jupiter’s zonal wind profile previous and through the Juno mission. Icarus 296, 163–178 (2017).

    ADS 

    Google Scholar 

  • Wong, M. H. et al. Excessive-resolution UV/optical/IR imaging of Jupiter in 2016–2019. Astrophys. J. Suppl. Ser. 247, 58 (2020).

    ADS 

    Google Scholar 

  • Kaspi, Y. et al. Jupiter’s atmospheric jet streams prolong 1000’s of kilometres deep. Nature 555, 223–226 (2018).

    ADS 

    Google Scholar 

  • Galanti, E. & Kaspi, Y. Mixed magnetic and gravity measurements probe the deep zonal flows of the gasoline giants. Mon. Not. R. Astron. Soc. 501, 2352–2362 (2021).

    ADS 

    Google Scholar 

  • Moore, Okay. M. et al. Time variation of Jupiter’s inner magnetic discipline according to zonal wind advection. Nat. Astron. 3, 730–735 (2019).

    ADS 

    Google Scholar 

  • Bloxham, J. et al. Differential rotation in Jupiter’s inside revealed by simultaneous inversion for the magnetic discipline and zonal flux velocity. J. Geophys. Res. Planets 127, e2021JE007138 (2022).

    ADS 

    Google Scholar 

  • Jin, T.-C., Wu, J.-Z., Zhang, Y.-Z., Liu, Y.-L. & Zhou, Q. Shear-induced modulation of convection over tough plates. J. Fluid Mech. 936, A28 (2022).

    MathSciNet 
    MATH 

    Google Scholar 

  • Showman, A. P., Kaspi, Y. & Flierl, G. R. Scaling legal guidelines for convection and jet speeds in large planets. Icarus 211, 1258–1273 (2011).

    ADS 

    Google Scholar 

  • Aurnou, J. M., Horn, S. & Julien, Okay. Connections between nonrotating, slowly rotating, and quickly rotating turbulent convective transport scalings. Phys. Rev. Res 2, 043115 (2015).

    Google Scholar 

  • Hueso, R. & Sánchez-Lavega, A. A 3-dimensional mannequin of moist convection for the enormous planets: the Jupiter case. Icarus 151, 257–274 (2001).

    ADS 

    Google Scholar 

  • Sugiyama, Okay. et al. Intermittent cumulonimbus exercise breaking the three-layer cloud construction of Jupiter. Geophys. Res. Lett. 38, L13201 (2011).

    ADS 

    Google Scholar 

  • Debras, F. & Chabrier, G. New fashions of Jupiter within the context of Juno and Galileo. Astrophys. J. 872, 100 (2019).

    ADS 

    Google Scholar 

  • Gastine, T. & Wicht, J. Secure stratification promotes a number of zonal jets in a turbulent Jovian dynamo mannequin. Icarus 368, 114514 (2021).

    Google Scholar 

  • Orton, G. S. et al. Surprising long-term variability in Jupiter’s tropospheric temperatures. Nat. Astron. 7, 190–197 (2023).

    ADS 

    Google Scholar 

  • Schmid, P. J. Dynamic mode decomposition of numerical and experimental information. J. Fluid Mech. 656, 5–28 (2010).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar 

  • Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. Spectral evaluation of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar 

  • Tu, J. H., Rowley, C. W. & Luchtenburg, D. M. On dynamic mode decomposition: principle and purposes. J. Comput. Dyn. 1, 391–421 (2014).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kutz, J. N., Brunton, S. L., Brunton, B. W. & Proctor, J. L. Dynamic Mode Decomposition: Knowledge-Pushed Modeling of Complicated Methods (SIAM, 2016).

  • Gillet, N., Jault, D., Canet, E. & Fournier, A. Quick torsional waves and robust magnetic discipline inside the Earth’s core. Nature 465, 74–77 (2010).

    ADS 

    Google Scholar 

  • Higgins, C. A., Carr, T. D. & Reyes, F. A brand new dedication of Jupiter’s radio rotation interval. Geophys. Res. Lett. 23, 2653–2656 (1996).

    ADS 

    Google Scholar 

  • Gaulme, P., Schmider, F.-X., Homosexual, J., Guillot, T. & Jacob, C. Detection of Jovian seismic waves: a brand new probe of its inside construction. Astron. Astrophys. 531, A104 (2011).

    Google Scholar 

  • Glatzmaier, G. A. Laptop simulations of Jupiter’s deep inner dynamics assist interpret what Juno sees. Proc. Nat. Acad. Sci. 115, 6896–6904 (2018).

    ADS 

    Google Scholar 

  • Wahl, S. M. et al. Evaluating Jupiter inside construction fashions to Juno gravity measurements and the function of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).

    ADS 

    Google Scholar 

  • Stevenson, D. J. Jupiter’s inside as revealed by Juno. Annu. Rev. Earth Planet. Sci. 48, 465–489 (2020).

    ADS 

    Google Scholar 

  • Pontin, C. M., Barker, A. J., Hollerbach, R., André, Q. & Mathis, S. Wave propagation in semiconvective areas of large planets. Mon. Not. R. Astron. Soc. 493, 5788–5806 (2020).

    ADS 

    Google Scholar 

  • Roberts, P. H. & Aurnou, J. M. On the idea of core-mantle coupling. Geophys. Astrophys. Fluid Dyn. 106, 157–230 (2012).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar 

  • Connerney, J. E. P. et al. A brand new mannequin of Jupiter’s magnetic discipline from Juno’s first 9 orbits. Geophys. Res. Lett. 45, 2590–2596 (2018).

    ADS 

    Google Scholar 

  • Scargle, J. D. Research in astronomical time collection evaluation. II. Statistical features of spectral evaluation of erratically spaced information. Astrophys. J 263, 835–853 (1982).

    ADS 

    Google Scholar 

  • Avila, A. M. & Mezić, I. Knowledge-driven evaluation and forecasting o f freeway site visitors dynamics. Nat. Commun. 11, 2090 (2020).

    ADS 

    Google Scholar 

  • Hori, Okay., Tobias, S. M. & Teed, R. J. Dynamic mode decomposition to retrieve torsional Alfvén waves. In Proceedings of the Japan Society of Fluid Mechanics Annual Assembly 2020. Preprint at https://doi.org/10.48550/arXiv.2009.13095 (2020).

  • Jovanović, M. R., Schmid, P. J. & Nichols, J. W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024103 (2014).

    ADS 

    Google Scholar 

  • Gavish, M. & Donoho, D. L. The optimum onerous threshold for singular values is (4/sqrt{3}). IEEE Trans. Inf. Concept 60, 5040–5053 (2014).

    Google Scholar 

  • Gillet, N., Jault, D. & Canet, E. Excitation of travelling torsional regular modes in an Earth’s core mannequin. Geophys. J. Int. 210, 1503–1516 (2017).

    ADS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *