Atmospheric formaldehyde production on early Mars leading to a potential formation of bio-important molecules

  • Wordsworth, R. D. The local weather of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Carter, J., Poulet, F., Bibring, J. P. & Murchie, S. Detection of hydrated silicates in crustal outcrops within the northern plains of Mars. Science 328, 1682–1686 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Cleaves, H. J. II. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miller, S. L. & Urey, H. C. Natural compound synthesis on the primitive earth. Science 130, 245–251 (1959).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Kebukawa, Y., Chan, Q. H., Tachibana, S., Kobayashi, Okay. & Zolensky, M. E. One-pot synthesis of amino acid precursors with insoluble natural matter in planetesimals with aqueous exercise. Sci. Adv. 3, e1602093 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, Y., Iwasa, Y. & Chikaraishi, Y. Synthesis of 13C-enriched amino acids with 13C-depleted insoluble natural matter in a formose-type response within the early photo voltaic system. Sci. Adv. 7, eabd3575 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Breslow, R. On the mechanism of the formose response. Tetrahedron Lett. 1, 22–26 (1959).

    Article 

    Google Scholar 

  • Furukawa, Y. et al. Extraterrestrial ribose and different sugars in primitive meteorites. Proc. Natl. Acad. Sci. U.S.A. 116, 24440–24445 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gilbert, W. Origin of life: The RNA world. Nature 319, 618–618 (1986).

    Article 
    ADS 

    Google Scholar 

  • Overlook, F. et al. 3D modelling of the early martian local weather beneath a denser CO2 environment: Temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wordsworth, R. et al. World modelling of the early martian local weather beneath a denser CO2 environment: Water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wordsworth, R. et al. Transient lowering greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kamada, A. et al. A coupled environment–hydrosphere world local weather mannequin of early Mars: A ‘cool and moist’situation for the formation of water channels. Icarus 338, 113567 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kamada, A. et al. World local weather and river transport simulations of early Mars across the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Photochemical manufacturing of formaldehyde in Earth’s primitive environment. Science 210, 183–185 (1980).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Harman, C. E., Kasting, J. F. & Wolf, E. T. Atmospheric manufacturing of glycolaldehyde beneath hazy prebiotic situations. Orig. Life Evol. Biosph. 43, 77–98 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Nakamura, Y. et al. Photochemical and radiation transport mannequin for in depth use (PROTEUS). Earth Planets House 75, 140 (2023).

    Article 
    ADS 

    Google Scholar 

  • Nakamura, Y. et al. Impact of meteoric ions on ionospheric conductance at Jupiter. J. Geophys. Res. House Phys. 127, e2022JA030312 (2022).

    Article 
    ADS 

    Google Scholar 

  • Yoshida, T. et al. Robust depletion of 13C in CO induced by photolysis of CO2 within the Martian environment, calculated by a photochemical mannequin. Planet. Sci. J. 4, 53 (2023).

    Article 

    Google Scholar 

  • Kamada, A. et al. Evolution of ice sheets on early Mars with subglacial river programs. Icarus 385, 115117 (2022).

    Article 
    CAS 

    Google Scholar 

  • Krasnopolsky, V. A. Photo voltaic exercise variations of thermospheric temperatures on Mars and an issue of CO within the decrease environment. Icarus 207, 638–647 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Koyama, S. et al. Stability of atmospheric redox states of early Mars inferred from time response of the regulation of H and O losses. Astrophys. J. 912, 135 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Amerstorfer, U. V. et al. Escape and evolution of Mars’s CO2 environment: Affect of suprathermal atoms. J. Geophys. Res. Planets 122, 1321–1337 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Claire, M. W. et al. The evolution of photo voltaic flux from 0.1 nm to 160 μm: quantitative estimates for planetary research. Astrophys. J. 757, 95 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ranjan, S. et al. Photochemistry of anoxic abiotic liveable planet atmospheres: impression of recent H2O cross sections. Astrophys. J. 896, 148 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Matta, M., Withers, P. & Mendillo, M. The composition of Mars’ topside ionosphere: Results of hydrogen. J. Geophys. Res. House Phys. 118, 2681–2693 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry mannequin and benchmark instances. Astrophys. J. 761, 166 (2012).

    Article 
    ADS 

    Google Scholar 

  • Batalha, N., Domagal-Goldman, S. D., Ramirez, R. & Kasting, J. F. Testing the early Mars H2–CO2 greenhouse speculation with a 1-D photochemical mannequin. Icarus 258, 337–349 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pearce, B. Okay. et al. Towards RNA life on early Earth: From atmospheric HCN to biomolecule manufacturing in heat little ponds. Astrophys. J. 932, 9 (2022).

    Article 
    ADS 

    Google Scholar 

  • Giorgi, F. & Chameides, W. L. The rainout parameterization in a photochemical mannequin. J. Geophys. Res. Atmos. 90, 7872–7880 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haberle, R. M., Zahnle, Okay., Barlow, N. G. & Steakley, Okay. E. Influence degassing of H2 on early Mars and its impact on the local weather system. Geophys. Res. Lett. 46, 13355–13362 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wordsworth, R. et al. A coupled mannequin of episodic warming, oxidation and geochemical transitions on early Mars. Nat. Geosci. 14, 127–132 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pan, L. & Deng, Z. Bizzarro M (2023) Influence induced oxidation and its implications for early Mars local weather. Geophys. Res. Lett. 50, e2023GL102724 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chassefière, E., Lasue, J., Langlais, B. & Quesnel, Y. Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51, 2234–2245 (2016).

    Article 
    ADS 

    Google Scholar 

  • Zahnle, Okay., Haberle, R. M., Catling, D. C. & Kasting, J. F. Photochemical instability of the traditional Martian environment. J. Geophys. Res. Planets 113, E11 (2008).

    Article 

    Google Scholar 

  • Kasting, J. F. Bolide impacts and the oxidation state of carbon within the Earth’s early environment. Orig. Life Evol. Biosph. 20, 199–231 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kharecha, P., Kasting, J. & Siefert, J. A coupled environment–ecosystem mannequin of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article 
    CAS 

    Google Scholar 

  • Reilly, J. P., Clark, J. H., Moore, C. B. & Pimentel, G. C. HCO manufacturing, vibrational rest, chemical kinetics, and spectroscopy following laser photolysis of formaldehyde. J. Chem. Phys. 69, 4381–4394 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McElroy, M. B. & Donahue, T. M. Stability of the Martian environment. Science 177, 986–988 (1972).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cartier, C. et al. Experimental examine of hint ingredient partitioning between enstatite and soften in enstatite chondrites at low oxygen fugacities and 5 GPa. Geochim. Cosmochim. Acta 130, 167–187 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Masuda, S., Furukawa, Y. & Kobayashi, T. Experimental investigation of the formation of formaldehyde by Hadean and Noachian impacts. Astrobiology 21, 413–420 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Korablev, O. I. et al. Tentative identification of formaldehyde within the Martian environment. Planet. House sci. 41, 441–451 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ono, C., et al. Abiotic ribose synthesis beneath aqueous environments with numerous chemical situations. Submitted to Astrobiology.

  • Di, A. G. & Hynek, B. M. Historical Ocean on Mars supported by world distribution of deltas and valleys. Nat. Geosci 3, 459–463 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hurowitz, J. A., Fischer, W. W., Tosca, N. J. & Milliken, R. E. Origin of acidic floor waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Evaluating the abiotic synthesis potential and the soundness of constructing blocks of life beneath an impact-induced steam environment. Entrance. Microbiol. 14, 1032073 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashimoto, G. L., Abe, Y. & Sugita, S. The chemical composition of the early terrestrial environment: Formation of a lowering environment from CI-like materials. J. Geophys. Res. Planets 112, E5 (2007).

    Article 

    Google Scholar 

  • Shimamura, Okay., Shimojo, F., Nakano, A. & Tanaka, S. Meteorite impact-induced speedy NH3 manufacturing on early Earth: Ab Initio molecular dynamics simulation. Sci. Rep. 6, 38953 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Koike, M. et al. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat. Commun. 11, 1988 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stern, J. C., Malespin, C. A. & Eigenbrode, J. L. Natural carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc. Natl. Acad. Sci. USA 119, e2201139119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Home, C. H. et al. Depleted carbon isotope compositions noticed at Gale crater. Mars. Proc. Natl. Acad. Sci. USA 119, e2115651119 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ueno, Y. et al. Anomalously 13C-depleted natural matter from CO in early Mars environment, 19 December 2022, PREPRINT (Model 1) out there at Analysis Sq. https://doi.org/10.21203/rs.3.rs-2312052/v1

  • Bibring, J. P. et al. World mineralogical and aqueous Mars historical past derived from OMEGA/Mars specific knowledge. Science 312, 400–404 (2006).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Ehlmann, B. L. et al. Clay minerals in delta deposits and natural preservation potential on Mars. Nat. Geosci. 1, 355–358 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lohrmann, R. & Orgel, L. E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating brokers. Science 171, 1–5 (1968).

    Google Scholar 

  • Rodriguez-Garcia, M. et al. Formation of oligopeptides in excessive yield beneath easy programmable situations. Nat. Commun. 6, 8385 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Becker, S. et al. Unified prebiotically believable synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Toner, J. D. & Catling, D. C. A carbonate-rich lake answer to the phosphate downside of the origin of life. Proc. Natl. Acad. Sci. USA 117, 883–888 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Gasda, et al. In situ detection of boron by ChemCam on Mars. Geophys. Res. Lett. 44, 8739–8748 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sumie, Y. et al. Boron-assisted abiotic polypeptide synthesis. Commun. Chem. 6, 89 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *