Sustained wet–dry cycling on early Mars

  • Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian floor. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vasavada, A. R. Mission overview and scientific contributions from the Mars Science Laboratory Curiosity rover after eight years of floor operations. House Sci. Rev. 218, 14 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kite, E. S. Geologic constraints on early Mars local weather. House Sci. Rev. 215, 10 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sheldon, N. D. & Tabor, N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction utilizing paleosols. Earth Sci. Rev. 95, 1–52 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wordsworth, R. The local weather of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a hotter and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Campbell, T. D. et al. Prebiotic condensation by means of moist–dry biking regulated by deliquescence. Nat. Commun. 10, 4508 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, S. et al. Moist–dry cycles allow the parallel origin of canonical and non-canonical nucleosides by steady synthesis. Nat. Commun. 9, 163 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farley, Okay. A. et al. In situ radiometric and publicity age relationship of the Martian floor. Science 343, 1247166 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodwin, A., Garwood, R. J. & Tartèse, R. A evaluation of the “Black Magnificence” Martian regolith breccia and its Martian habitability report. Astrobiology 22, 755–767 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Guzewich, S. D. et al. 3D simulations of the early Martian hydrological cycle mediated by a H2–CO2 greenhouse. J. Geophys. Res. Planets 126, e2021JE006825 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kamada, A., Kuroda, T., Kasaba, Y., Terada, N. & Nakagawa, H. International local weather and river transport simulations of early Mars across the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kite, E. S., Steele, L. J., Mischna, M. A. & Richardson, M. I. Heat early Mars floor enabled by high-altitude water ice clouds. Proc. Natl Acad. Sci. USA 118, e2101959118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turbet, M. & Neglect, F. 3-D International modelling of the early martian local weather below a dense CO2 + H2 environment and for a variety of floor water inventories. Preprint at https://arxiv.org/abs/2103.10301 (2021).

  • Steakley, Okay., Murphy, J., Kahre, M., Haberle, R. & Kling, A. Testing the influence heating speculation for early Mars with a 3-D world local weather mannequin. Icarus 330, 169–188 (2019).

    Article 
    ADS 

    Google Scholar 

  • Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode period for early Mars: integrating lake hydrology and local weather fashions. Geophys. Res. Lett. 48, e2021GL093523 (2021).

    Article 
    ADS 

    Google Scholar 

  • Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an historic lake deposit, Gale Crater, Mars. Science 350, aac7575 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rapin, W. et al. An interval of excessive salinity in historic Gale Crater lake on Mars. Nat. Geosci. 12, 889–895 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).

    Article 

    Google Scholar 

  • Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic report in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).

    Article 
    ADS 

    Google Scholar 

  • Bibring, J.-P. et al. International mineralogical and aqueous mars historical past derived from OMEGA/Mars Specific knowledge. Science 312, 400–404 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lasser, J., Nield, J. M. & Goehring, L. Floor and subsurface characterisation of salt pans expressing polygonal patterns. Earth Syst. Sci. Information 12, 2881–2898 (2020).

    Article 
    ADS 

    Google Scholar 

  • Goodall, T. M., North, C. P. & Glennie, Okay. W. Floor and subsurface sedimentary buildings produced by salt crusts. Sedimentology 47, 99–118 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goehring, L., Conroy, R., Akhter, A., J. Clegg, W. & Routh, A. F. Evolution of mud-crack patterns throughout repeated drying cycles. Tender Matter 6, 3562–3567 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goehring, L. Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120353 (2013).

    ADS 

    Google Scholar 

  • Sadler, P. M. Sediment accumulation charges and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).

    Article 
    ADS 

    Google Scholar 

  • Daniels, J. M. Floodplain aggradation and pedogenesis in a semiarid atmosphere. Geomorphology 56, 225–242 (2003).

    Article 
    ADS 

    Google Scholar 

  • Kraus, M. J. Paleosols in clastic sedimentary rocks: their geologic functions. Earth Sci. Rev. 47, 41–70 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stein, N. et al. Desiccation cracks present proof of lake drying on Mars, Sutton Island member, Murray Formation, Gale Crater. Geology 46, 515–518 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baccolo, G. et al. Jarosite formation in deep Antarctic ice offers a window into acidic, water-limited weathering on Mars. Nat. Commun. 12, 436 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niles, P. B. & Michalski, J. Meridiani Planum sediments on Mars fashioned by means of weathering in large ice deposits. Nat. Geosci. 2, 215–220 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Becker, S. et al. Unified prebiotically believable synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Higgs, P. G. The impact of restricted diffusion and moist–dry biking on reversible polymerization reactions: implications for prebiotic synthesis of nucleic acids. Life 6, 24 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, D. S. & Deamer, D. Dry/moist biking and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bristow, T. F. et al. Clay mineral range and abundance in sedimentary rocks of Gale Crater, Mars. Sci. Adv. 4, eaar3330 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishop, J. L. et al. What the traditional phyllosilicates at Mawrth Vallis can inform us about potential habitability on early Mars. Planet. House Sci. 86, 130–149 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pedreira-Segade, U., Feuillie, C., Pelletier, M., Michot, L. J. & Daniel, I. Adsorption of nucleotides onto ferromagnesian phyllosilicates: significance for the origin of life. Geochim. Cosmochim. Acta 176, 81–95 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clark, B. C. & Kolb, V. M. Macrobiont: cradle for the origin of life and creation of a biosphere. Life 10, 278 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Vol. 102, (SEPM Society for Sedimentary Geology) 1–48 (2012).

  • Knoll, A. H. Paleobiological views on early microbial evolution. Chilly Spring Harb. Perspect. Biol. 7, a018093 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, B. J. et al. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars utilizing Mars Reconnaissance Orbiter knowledge. Icarus 214, 413–432 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Le Deit, L. et al. Sequence of infilling occasions in Gale Crater, Mars: outcomes from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 118, 2439–2473 (2013).

    Article 
    ADS 

    Google Scholar 

  • Grotzinger, J. P. et al. Mars Science Laboratory Mission and science investigation. House Sci. Rev. 170, 5–56 (2012).

    Article 
    ADS 

    Google Scholar 

  • Maurice, S. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science targets and mast unit description. House Sci. Rev. 170, 95–166 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wiens, R. C. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: physique unit and mixed system checks. House Sci. Rev. 170, 167–227 (2012).

    Article 
    ADS 

    Google Scholar 

  • Clegg, S. M. et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta Half B 129, 64–85 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rapin, W. et al. Quantification of water content material by laser induced breakdown spectroscopy on Mars. Spectrochim. Acta Half B 130, 82–100 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schieber, J. et al. Engraved on the rocks—Aeolian abrasion of Martian mudstone exposures and their relationship to trendy wind patterns in Gale Crater, Mars. Depositional Rec. 6, 625–647 (2020).

    Article 

    Google Scholar 

  • Hartmann, W. Okay. & Neukum, G. Cratering chronology and the evolution of Mars. House Sci. Rev. 96, 165–194 (2001).

    Article 
    ADS 

    Google Scholar 

  • Quantin-Nataf, C., Craddock, R. A., Dubuffet, F., Lozac’h, L. & Martinot, M. Decline of crater obliteration charges throughout early Martian historical past. Icarus 317, 427–433 (2019).

    Article 
    ADS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *