A novel method for extracting metals from asteroids using non-aqueous deep eutectic solvents

  • Hepp, A. F. et al. In-situ useful resource utilization for house exploration: useful resource processing, mission-enabling applied sciences, and classes for sustainability on earth and past. (2015). https://doi.org/10.2514/6.2014-3761

  • Anand, M. et al. A short evaluate of chemical and mineralogical sources on the Moon and certain preliminary in situ useful resource utilization (ISRU) purposes. Planet. Area Sci. 74, 42–48 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Gumulya, Y., Zea, L. & Kaksonen, A. H. In situ useful resource utilisation: The potential for house biomining. Miner. Eng. 176 (2022).

  • Schwandt, C., Hamilton, J. A., Fray, D. J. & Crawford, I. A. The manufacturing of oxygen and metallic from lunar regolith. Planet. Area Sci. 74, 49–56 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Basilevsky, A. T. et al. Geologic traits of the Luna 17/Lunokhod 1 and Chang’E-3/Yutu touchdown websites, Northwest Mare Imbrium of the Moon. Planet. Area Sci. 117, 385–400 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Hardersen, P. S., Gaffey, M. J. & Abell, P. A. Close to-IR spectral proof for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids. Icarus 175, 141–158 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Hardersen, P. S., Cloutis, E. A., Reddy, V., Mothé-Diniz, T. & Emery, J. P. The M-/X-asteroid menagerie: Outcomes of an NIR spectral survey of 45 main-belt asteroids. Meteorit. Planet. Sci. 46, 1910–1938 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Shepard, M. Ok. et al. A radar survey of M- and X-class asteroids II. Abstract and synthesis. Icarus 208, 221–237 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Zacny, Ok. et al. Asteroid mining. in AIAA SPACE 2013 Convention and Exposition (2013). https://doi.org/10.2514/6.2013-5304

  • Elvis, M. Let’s mine asteroids-for science and revenue. Nature 485, 549 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Becker, T. M. et al. HST UV observations of asteroid (16) psyche. Planet. Sci. J. 1, (2020).

  • Sanchez, J. A. et al. Bodily characterization of metal-rich near-earth asteroids 6178 (1986 DA) and 2016 ED85. Planet. Sci. J. 2, (2021).

  • Schindewolf, U. Selenium and tellurium content material of stony meteorites by neutron activation. Geochim. Cosmochim. Acta 19, 134–138 (1960).

    ADS 
    CAS 

    Google Scholar 

  • Dreibus, G., Palme, H., Spettel, B., Zipfel, J. & Wanke, H. Sulfur and selenium in chondritic meteorites. Meteoritics 439–445 (1995). https://doi.org/10.1111/j.1945-5100.1995.tb01150.x

  • Jaziri, N. et al. A complete evaluate of thermoelectric mills: Applied sciences and customary purposes. Power Rep. 6, 264–287 (2020).

    Google Scholar 

  • Nassar, N. T., Wilburn, D. R. & Goonan, T. G. Byproduct metallic necessities for U.S. wind and photo voltaic photovoltaic electrical energy technology as much as the yr 2040 underneath varied Clear Energy Plan situations. Appl. Power 183, 1209–1226 (2016).

  • Singh, F. V. & Wirth, T. Selenium and tellurium electrophiles in natural synthesis. Phys. Sci. Rev. 4 (2018).

  • Singh, F. V. & Wirth, T. Selenium reagents as catalysts. Catal. Sci. Technol. 9, 1073–1091 (2019).

    CAS 

    Google Scholar 

  • Paley, M. S., Karr, L. J., Marone, M. & Curreri, P. Oxygen manufacturing from lunar regolith utilizing ionic liquids (2009).

  • Sanders, G. B. & Larson, W. E. Progress made in lunar in-situ useful resource utilization underneath NASA’s exploration know-how and improvement program. (2012).

  • Sargeant, H. M. et al. Hydrogen discount of lunar samples in a static system for a water manufacturing demonstration on the Moon. Planet. Area Sci. 205 (2021).

  • Allen, C. C., Morris, R. V. & McKay, D. S. Oxygen extraction from lunar soils and pyroclastic glass. J. Geophys. Res. Planets 101, 26085–26095 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Schlüter, L. & Cowley, A. Evaluate of strategies for in-situ oxygen extraction on the moon. Planetary Area Sci. 181, (2020).

  • Gibson, M. A. et al. Discount of lunar basalt 70035: Oxygen yield and response product evaluation. J. Geophys. Res. 99 (1994).

  • Meurisse, A. et al. Decrease temperature electrochemical discount of lunar regolith simulants in molten salts. Planet. Area Sci. 211 (2022).

  • Cockell, C. S. et al. Area station biomining experiment demonstrates uncommon earth component extraction in microgravity and Mars gravity. Nat. Commun. 11 (2020).

  • Fray, D. J., Farthing, T. W. & Chen, Z. Elimination of oxygen from metallic oxides and stable options by electrolysis in a fused salt (1999).

  • Chen, G. Z., Fray, D. J. & Farthing, T. W. Direct electrochemical discount of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, G. Z. The FFC Cambridge course of and its relevance to valorisation of ilmenite and titanium-rich slag. Trans. Inst. Min. Metall. Sect. C Miner. Course of. Extr. Metall. 124, 96–105 (2015).

  • Lomax, B. A. et al. Proving the viability of an electrochemical course of for the simultaneous extraction of oxygen and manufacturing of metallic alloys from lunar regolith. Planet. Area Sci. 180, (2020).

  • Nababan, D. C., Shaw, M. G., Humbert, M. S., Mukhlis, R. Z. & Rhamdhani, M. A. Metals extraction on Mars by means of carbothermic discount. Acta Astronaut. 198, 564–576 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Norgate, T. & Haque, N. Power and greenhouse fuel impacts of mining and mineral processing operations. J. Clear. Prod. 18, 266–274 (2010).

    CAS 

    Google Scholar 

  • Kaczmarzyk, M., Gawronski, M. & Piatkowski, G. International database of direct photo voltaic radiation on the Moon’s floor for lunar engineering functions. In E3S Net of Conferences 49, (EDP Sciences, 2018).

  • Xiao, W. & Wang, D. The electrochemical discount processes of stable compounds in excessive temperature molten salts. Chem. Soc. Rev. 43, 3215–3228 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Shaw, M. et al. Mineral processing and metallic extraction on the lunar floor: Challenges and alternatives. Miner. Course of. Extr. Metall. Rev. https://doi.org/10.1080/08827508.2021.1969390 (2021).

    Article 

    Google Scholar 

  • Pateli, I. M., Abbott, A. P., Hartley, J. M. & Jenkin, G. R. T. Electrochemical oxidation as different for dissolution of metallic oxides in deep eutectic solvents. Inexperienced Chem. 22, 8360–8368 (2020).

    CAS 

    Google Scholar 

  • Smith, E. L., Abbott, A. P. & Ryder, Ok. S. Deep eutectic solvents (DESs) and their purposes. Chem. Rev. 114, 11060–11082 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, S. H., Caparanga, A. R., Leron, R. B. & Li, M. H. Vapor stress of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30–70 °C. Thermochim. Acta 544, 1–5 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Salehi, H. S. et al. Vapor pressures and vapor part compositions of choline chloride urea and choline chloride ethylene glycol deep eutectic solvents from molecular simulation. J. Chem. Phys. 155 (2021).

  • Abbott, A. P., Frisch, G., Hartley, J. & Ryder, Ok. S. Processing of metals and metallic oxides utilizing ionic liquids. Inexperienced Chem. 13, 471–481 (2011).

    CAS 

    Google Scholar 

  • Rivera, R. M., Zante, G., Hartley, J. M., Ryder, Ok. S. & Abbott, A. P. Catalytic dissolution of metals from printed circuit boards utilizing a calcium chloride–based mostly deep eutectic solvent. Inexperienced Chem. 24, 3023–3034 (2022).

    Google Scholar 

  • Abbott, A. P., Barron, J. C., Ryder, Ok. S. & Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chem. a Eur. J. 13, 6495–6501 (2007).

    CAS 

    Google Scholar 

  • Abood, H. M. A., Abbott, A. P., Ballantyne, A. D. & Ryder, Ok. S. Do all ionic liquids want natural cations? Characterisation of [AlCl2·nAmide]+ AlCl4- and comparability with imidazolium based mostly programs. Chem. Commun. 47, 3523–3525 (2011).

    CAS 

    Google Scholar 

  • Hartley, J. M. et al. EXAFS research into the speciation of metallic salts dissolved in ionic liquids and deep eutectic solvents. Inorg. Chem. 53, 6280–6288 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Fackrell, L. E., Schroeder, P. A., Thompson, A., Stockstill-Cahill, Ok. & Hibbitts, C. A. Growth of Martian regolith and bedrock simulants: Potential and limitations of Martian regolith as an in-situ useful resource. Icarus 354, 114055 (2021).

    CAS 

    Google Scholar 

  • Korablev, O. et al. Transient HCl within the ambiance of Mars. Sci. Adv 7, 4386 (2021).

    ADS 

    Google Scholar 

  • Fedoseev, G. et al. Formation of glycerol by means of hydrogenation of CO ice underneath prestellar core situations. Astrophys. J. 842, 52 (2017).

    ADS 

    Google Scholar 

  • Zhu, L. et al. Quantum chemical research of the formation of urea in interstellar medium. J. Undergrad. Life Sci. 14, (2020).

  • Choe, J. C. Prebiotic cytosine synthesis from urea in interstellar house: A computational mechanistic research. Astrophys. J. 898, 13 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Brigiano, F. S., Jeanvoine, Y., Largo, A. & Spezia, R. The formation of urea in house: I. Ion-molecule, neutral-neutral, and radical gas-phase reactions. Astron. Astrophys. 610 (2018).

  • Jeanvoine, Y. & Spezia, R. The formation of urea in house. II. MP2 versus PM6 dynamics in figuring out bimolecular response merchandise. Theor. Chem. Acc. 138 (2019).

  • Rubin, A. E. Kamacite and olivine in abnormal chondrites: Intergroup and intragroup relationships. Geochim. Cosmochim. Acta 54, 1217–1232 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Scott, E. R. D. & Krot, A. N. Chondrites and their elements. in Treatise on Geochemistry 1–72 (2007). https://doi.org/10.1016/B0-08-043751-6/01145-2

  • Haack, H. et al. Ejby: A brand new H5/6 abnormal chondrite fall in Copenhagen, Denmark. Meteorit. Planet. Sci. 54, 1853–1869 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Lux, G., Keil, Ok. & Taylor, G. J. Chondrules in H3 chondrites: textures, compositions and origins. Geochim. Cosmochim. Acta 45, 675–685 (1981).

    ADS 
    CAS 

    Google Scholar 

  • Haubner, R. & Strobl, S. Campo del Cielo: An iron meteorite present in Argentina. Pract. Metallogr. 58, 570–580 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Rasmussen, Ok. L., Greenway, T. J. L. & Gwozdz, R. The composition of kamacite in iron meteorites investigated by accelerator mass spectroscopy, neutron activation evaluation and analytical electron microscopy. Nucl. Inst. Strategies Phys. Res. B 36, 43–52 (1989).

    ADS 

    Google Scholar 

  • Abbott, A. P. et al. Ionometallurgy: Designer redox properties for metallic processing. Chem. Commun. 47, 10031–10033 (2011).

    CAS 

    Google Scholar 

  • Jenkin, G. R. T. et al. The appliance of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and restoration of treasured metals. Miner. Eng. 87, 18–24 (2016).

    CAS 

    Google Scholar 

  • Zante, G., Marin Rivera, R., Hartley, J. M. & Abbott, A. P. Environment friendly recycling of metals from photo voltaic cells utilizing catalytic etchants. J. Clear. Prod. 370, 133552 (2022).

    CAS 

    Google Scholar 

  • Abbott, A. P. et al. Electrocatalytic restoration of components from complicated mixtures utilizing deep eutectic solvents. Inexperienced Chem. 17, 2172–2179 (2015).

    CAS 

    Google Scholar 

  • Sahin, M. et al. A possible different for treasured metallic restoration from E-waste: Iodine leaching. Sep. Sci. Technol. 50, 2587–2595 (2015).

    CAS 

    Google Scholar 

  • Meng, Q. et al. A research of the electrodeposition of gold course of in iodine leaching answer. Metals (Basel). 10 (2020).

  • Jones, D., Hartley, J., Frisch, G., Purnell, M. & Darras, L. Non-destructive, secure removing of conductive metallic coatings from fossils: A brand new answer. Palaeontol. Electron. 15, (2012).

  • Popescu, A. M. et al. Restoration of silver and gold from digital waste by electrodeposition in ethaline ionic liquid. REV.CHIM.(Bucharest) ♦ 71, 122 (2020).

  • Popescu, A. M. et al. The usage of deep eutectic solvents ionic liquids for selective dissolution and restoration of Sn, Pb and Zn from electrical and digital waste (WEEE). REV.CHIM.(Bucharest)♦ 68, 1963–1968 (2017).

  • Winarko, R., Dreisinger, D. B., Miura, A., Tokoro, C. & Liu, W. Kinetic modelling of chalcopyrite leaching assisted by iodine in ferric sulfate media. Hydrometallurgy 197, (2020).

  • Winarko, R., Dreisinger, D. B., Miura, A., Fukano, Y. & Liu, W. Iodine-assisted chalcopyrite leaching in ferric sulfate media: Kinetic research underneath totally managed redox potential and pH. Hydrometallurgy 208, 105797 (2022).

    CAS 

    Google Scholar 

  • Abbott, A. P., Ahmed, E. I., Harris, R. C. & Ryder, Ok. S. Evaluating water miscible deep eutectic solvents (DESs) and ionic liquids as potential lubricants. Inexperienced Chem. 16, 4156–4161 (2014).

    CAS 

    Google Scholar 

  • Rozas, S., Benito, C., Alcalde, R., Atilhan, M. & Aparicio, S. Insights on the water impact on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol. J. Mol. Liq. 344, 117717 (2021).

    CAS 

    Google Scholar 

  • Chilambarasan, L., Prakash, R., Shanu, J. P. & Murugasen, P. Investigation on {the electrical} conductivity of aqueous glycol based mostly ZnO nanofluids. J. Appl. Fluid Mech. 12, 865–870 (2019).

    Google Scholar 

  • Grishina, E. P. & Kudryakova, N. O. Conductivity and electrochemical stability of concentrated aqueous choline chloride options. Russ. J. Phys. Chem. A 91, 2024–2028 (2017).

    CAS 

    Google Scholar 

  • Xu, J. et al. Redox traits of iron ions in several deep eutectic solvents. Ionics (Kiel). 26, 483–492 (2020).

    CAS 

    Google Scholar 

  • Hartley, J. M. et al. Investigating the dissolution of iron sulfide and arsenide minerals in deep eutectic solvents. Hydrometallurgy 198 (2020).

  • Anggara, S. et al. Direct extraction of copper from copper sulfide minerals utilizing deep eutectic solvents. Inexperienced Chem. 21, 6502–6512 (2019).

    CAS 

    Google Scholar 

  • Abbott, A. P. et al. Dissolution of pyrite and different Fe–S–As minerals utilizing deep eutectic solvents. Inexperienced Chem. 19, 2225–2233 (2017).

    CAS 

    Google Scholar 

  • Hartley, J. M. et al. Calcium chloride-based programs for metallic electrodeposition. Electrochim. Acta 402 (2022).

  • Amphlett, J. T. M., Ogden, M. D., Yang, W. & Choi, S. Probing Ni2+ and Co2+ speciation in carboxylic acid based mostly deep eutectic solvents utilizing UV/Vis and FT-IR spectroscopy. J. Mol. Liq. 318 (2020).

  • Ahmed, E. I., Ryder, Ok. S. & Abbott, A. P. Corrosion of iron, nickel and aluminium in deep eutectic solvents. Electrochim. Acta 397, 139284 (2021).

    CAS 

    Google Scholar 

  • Abbott, A. P., Frisch, G., Hartley, J., Karim, W. O. & Ryder, Ok. S. Anodic dissolution of metals in ionic liquids. Prog. Nat. Sci. Mater. Int. 25, 595–602 (2015).

    CAS 

    Google Scholar 

  • Hartley, J. M. et al. Iodine speciation in deep eutectic solvents. Phys. Chem. Chem. Phys. https://doi.org/10.1039/d2cp03185j (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hartley, J. M. et al. Tailoring lixiviant properties to optimise selectivity in E-waste recycling. RSC Maintain. 1, 107–116 (2023).

    Google Scholar 

  • Endres, F. et al. Electrodeposition from ionic liquids. Electrodepos. from Ion. Liq. 12–15 (2017). https://doi.org/10.1002/9783527682706

  • Abbott, A. P., Ballantyne, A., Harris, R. C., Juma, J. A. & Ryder, Ok. S. A comparative research of nickel electrodeposition utilizing deep eutectic solvents and aqueous options. Electrochim. Acta 176, 718–726 (2015).

    CAS 

    Google Scholar 

  • Li, S. et al. Direct proof of floor uncovered water ice within the lunar polar areas. Proc. Natl. Acad. Sci. USA 115, 8907–8912 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinkert, Ok. & Mandin, P. Fundamentals and future purposes of electrochemical power conversion in house. npj Microgravity 8 (2022).

  • Nelson, G. J. et al. Electrochemistry for house life assist. Electrochem. Soc. Interface 29, 47–52 (2020).

    CAS 

    Google Scholar 

  • Harmon, R. S. et al. Laser-induced breakdown spectroscopy: An rising analytical software for mineral exploration. Minerals 9, 1–45 (2019).

    CAS 

    Google Scholar 

  • Harmon, R. S. & Senesi, G. S. Laser-Induced Breakdown Spectroscopy: A geochemical software for the twenty first century. Appl. Geochemistry 128, 104929 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Gattacceca, J. et al. The meteoritical bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).

  • Bouvier, A., Gattacceca, J., Grossman, J. & Metzler, Ok. The Meteoritical Bulletin, No. 105. Meteorit. Planet. Sci. 52, 2411 (2017).

  • Liberman, R. G. et al. Campo del Cielo iron meteorite: Pattern shielding and meteoroid’s preatmospheric dimension. Meteorit. Planet. Sci. 37, 295–300 (2002).

    ADS 
    CAS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *