In situ observation of mass ejections caused by magnetic reconnections in the ionosphere of Mars

  • Gopalswamy, N. Historical past and growth of coronal mass ejections as a key participant in photo voltaic terrestrial relationship. Geosci. Lett. 3, 1–18 (2016).

  • Chen, J. Coronal mass ejections: causes and penalties—a theoretical view. Geophys. Monogr. Ser. 99, 65–81 (1997).

  • Chen, P. F. Coronal mass ejections: fashions and their observational foundation. Residing Rev. Sol. Phys. 8, 1–92 (2011).

  • Connerney, J. E. et al. Tectonic implications of Mars crustal magnetism. Proc. Natl Acad. Sci. USA 102, 14970–14975 (2005).

    Article 
    ADS 

    Google Scholar 

  • Bougher, S. W., Cravens, T. E., Grebowsky, J. & Luhmann, J. The aeronomy of mars: characterization by MAVEN of the higher environment reservoir that regulates risky escape. Area Sci. Rev. 195, 423–456 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mitchell, D. L. et al. Probing Mars’ crustal magnetic area and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106, 23419–23427 (2001).

    Article 
    ADS 

    Google Scholar 

  • Matta, M., Mendillo, M., Withers, P. & Morgan, D. Deciphering Mars ionospheric anomalies over crustal magnetic area areas utilizing a 2-D ionospheric mannequin. J. Geophys. Res. Area Phys. 120, 766–777 (2015).

    Article 
    ADS 

    Google Scholar 

  • Xu, S. et al. Excessive‐altitude closed magnetic loops at Mars noticed by MAVEN. Geophys. Res. Lett. 44, 211,229–211,238 (2017).

    Article 

    Google Scholar 

  • Hanson, W. B. & Mantas, G. P. Viking electron temperature measurements: proof for a magnetic area within the Martian ionosphere. J. Geophys. Res. Area Phys. 93, 7538–7544 (1988).

    Article 
    ADS 

    Google Scholar 

  • Cravens, T. E. et al. Magnetic reconnection within the ionosphere of Mars: the position of collisions. J. Geophys. Res. Area Phys. 125, e2020JA028036 (2020).

  • Eastwood, J. P. et al. Proof for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. 35, L02106 (2008).

  • Halekas, J. S. et al. In situ observations of reconnection Corridor magnetic fields at Mars: proof for ion diffusion area encounters. J. Geophys. Res. 114, A11204 (2009).

    ADS 

    Google Scholar 

  • Harada, Y. et al. Magnetic reconnection within the near-Mars magnetotail: MAVEN observations. Geophys. Res. Lett. 42, 8838–8845 (2015).

    Article 
    ADS 

    Google Scholar 

  • Harada, Y. et al. Survey of magnetic reconnection signatures within the Martian magnetotail with MAVEN. J. Geophys. Res. Area Phys. 122, 5114–5131 (2017).

    Article 
    ADS 

    Google Scholar 

  • Harada, Y. et al. Magnetic reconnection on dayside crustal magnetic fields at Mars: MAVEN observations. Geophys. Res. Lett. 45, 4550–4558 (2018).

    Article 
    ADS 

    Google Scholar 

  • Mind, D. A. et al. Episodic detachment of Martian crustal magnetic fields resulting in bulk atmospheric plasma escape. Geophys. Res. Lett. 37, L14108 (2010).

    Article 
    ADS 

    Google Scholar 

  • Mind, D. et al. A comparability of worldwide fashions for the photo voltaic wind interplay with Mars. Icarus 206, 139–151 (2010).

    Article 
    ADS 

    Google Scholar 

  • Mind, D. A., Hurley, D. & Combi, M. R. The photo voltaic wind interplay with Mars: latest progress and future instructions. Icarus 206, 1–4 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hara, T. et al. Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad–Shafranov reconstruction. J. Geophys. Res. Area Phys. 119, 7947–7962 (2014).

    Article 
    ADS 

    Google Scholar 

  • Lillis, R. J. et al. Characterizing atmospheric escape from Mars as we speak and thru time, with MAVEN. Area Sci. Rev. 195, 357–422 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hara, T. et al. MAVEN observations of an enormous ionospheric flux rope close to Mars ensuing from interplay between the crustal and interplanetary draped magnetic fields. J. Geophys. Res. Area Phys. 122, 828–842 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jakosky, B. M. et al. Lack of the Martian environment to house: present-day loss charges decided from MAVEN observations and built-in loss by time. Icarus 315, 146–157 (2018).

    Article 
    ADS 

    Google Scholar 

  • Wang, J. et al. MAVEN observations of magnetic reconnection at Martian induced magnetopause. Geophys. Res. Lett. 48, e2021GL095426 (2021).

    Article 
    ADS 

    Google Scholar 

  • Xu, X. et al. Ion loss inside a reconnection exhaust close to Mars: MAVEN observations. Astrophys. J. 955, 41–46 (2023).

  • Jakosky, B. M. et al. The Mars Ambiance and Unstable Evolution (MAVEN) mission. Area Sci. Rev. 195, 3–48 (2015).

    Article 
    ADS 

    Google Scholar 

  • Morschhauser, A., Lesur, V. & Grott, M. A spherical harmonic mannequin of the lithospheric magnetic area of Mars. J. Geophys. Res. Planets 119, 1162–1188 (2014).

    Article 
    ADS 

    Google Scholar 

  • Sonnerup, B. U. Ö. & Cahill, L. J. Magnetopause construction and perspective from Explorer 12 observations. J. Geophys. Res. 72, 171–183 (1967).

    Article 
    ADS 

    Google Scholar 

  • Sonnerup, B. U. & Scheible, M. in Evaluation Strategies for Multi-Spacecraft Knowledge (eds Paschmann, G. & Daly P.W.) (ESA Publications, 1998).

  • Mind, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S. & Lin, R. P. Electron pitch angle distributions as indicators of magnetic area topology close to Mars. J. Geophys. Res. 112, A09201 (2007).

    ADS 

    Google Scholar 

  • Mitchell, D. G. et al. An prolonged examine of the low-latitude boundary layer on the daybreak and nightfall flanks of the magnetosphere. J. Geophys. Res. 92, 7394–7404 (1987).

    Article 
    ADS 

    Google Scholar 

  • Xu, S. et al. Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Area Phys. 122, 1831–1852 (2017).

    Article 
    ADS 

    Google Scholar 

  • Xu, S. et al. A way to deduce magnetic topology at Mars and its software to the terminator area. J. Geophys. Res. Area Phys. 124, 1823–1842 (2019).

    Article 
    ADS 

    Google Scholar 

  • Priest, E. & Forbes, T. Magnetic Reconnection: MHD Idea and Functions (Cambridge Univ. Press, 2000).

  • Burch, J. L. & Phan, T. D. Magnetic reconnection on the dayside magnetopause: advances with MMS. Geophys. Res. Lett. 43, 8327–8338 (2016).

    Article 
    ADS 

    Google Scholar 

  • Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P. & Lepping, R. P. In situ detection of collisionless reconnection within the Earth’s magnetotail. Nature 412, 414–417 (2001).

    Article 
    ADS 

    Google Scholar 

  • Gosling, J. T. Magnetic reconnection within the photo voltaic wind. Area Sci. Rev. 172, 187–200 (2011).

    Article 
    ADS 

    Google Scholar 

  • Xu, X. et al. ARTEMIS observations of well-structured lunar wake in subsonic plasma circulation. Astrophys. J. 881, 76 (2019).

    Article 
    ADS 

    Google Scholar 

  • Jr, E. W. H. Magnetic reconnection within the Earth’s magnetotail. Aust. J. Phys. 38, 981–998 (1985).

  • Gosling, J. T., Birn, J. & Hesse, M. Three‐dimensional magnetic reconnection and the magnetic topology of coronal mass ejection occasions. Geophys. Res. Lett. 22, 869–872 (1995).

    Article 
    ADS 

    Google Scholar 

  • Planetary Knowledge System (NASA, 2024); https://pds.nasa.gov

  • MAVEN Science Knowledge Middle (Laboratory for Atmospheric and Area Physics, College of Colorado, 2024); https://lasp.colorado.edu/maven/sdc/public/

  • Ye, Y. MAVEN Knowledge Supplementary Toolkit (GitHub, 2024); https://github.com/StellarPlasma/MAVEN_IDL

  • SPEDAS (The Area Physics Setting Knowledge Evaluation Software program, 2024); http://spedas.org/wiki/index.php?title=Downloads_and_Installation

  • Coates, A. J. et al. Ionospheric photoelectrons: evaluating Venus, Earth, Mars and Titan. Planet. Area Sci. 59, 1019–1027 (2011).

    Article 
    ADS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *