Magnetosheath jets at Jupiter and across the solar system

  • Plaschke, F. et al. Jets downstream of collisionless shocks. House Sci. Rev. 214, 81 (2018).

    Article 
    ADS 

    Google Scholar 

  • Vuorinen, L., Hietala, H. & Plaschke, F. Jets within the magnetosheath: IMF management of the place they happen. Ann. Geophys. 37, 689 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Raptis, S. et al. On magnetosheath jet kinetic construction and plasma properties. Geophys. Res. Lett. 49, e2022GL100678 (2022).

    Article 
    ADS 

    Google Scholar 

  • Raptis, S. et al. Downstream high-speed plasma jet technology as a direct consequence of shock reformation. Nat. Commun. 13, 598 (2022).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Vuorinen, L., Hietala, H., LaMoury, A. T. & Plaschke, F. Photo voltaic wind parameters influencing magnetosheath jet formation: High and low IMF cone angle regimes. J. Geophys. Res. House Phys. 128, e2023JA031494 (2023).

    Article 
    ADS 

    Google Scholar 

  • Raptis, S., Karlsson, T., Plaschke, F., Kullen, A. & Lindqvist, P.-A. Classifying magnetosheath jets utilizing MMS: Statistical properties. J. Geophys. Res. House Phys. 125, e2019JA027754 (2020).

    Article 
    ADS 

    Google Scholar 

  • Shue, J.-H. et al. Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophys. Res. Lett. 36, L18112 (2009).

    Article 
    ADS 

    Google Scholar 

  • Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F. & Angelopoulos, V. Direct observations of a floor eigenmode of the dayside magnetopause. Nat. Commun. 10, 615 (2019).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Hietala, H. et al. In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection. Geophys. Res. Lett. 45, 1732 (2018).

    Article 
    ADS 

    Google Scholar 

  • Liu, Y. Y. et al. Parallel electron heating by tangential discontinuity within the turbulent magnetosheath. Astrophys. J. Lett. 877, L16 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, B., Nishimura, Y., Hietala, H. & Angelopoulos, V. Investigating the function of magnetosheath high-speed jets in triggering dayside floor magnetic ultra-low frequency waves. Geophys. Res. Lett. 49, e2022GL099768 (2022).

    Article 
    ADS 

    Google Scholar 

  • Hietala, H. et al. Supermagnetosonic jets behind a collisionless quasiparallel shock. Phys. Rev. Lett. 103, 245001 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Omelchenko, Y. A., Chen, L.-J. & Ng, J. 3d space-time adaptive hybrid simulations of magnetosheath high-speed jets. J. Geophys. Res. House Phys. 126, e2020JA029035 (2021).

    Article 
    ADS 

    Google Scholar 

  • Archer, M. O., Horbury, T. S. & Eastwood, J. P. Magnetosheath strain pulses: Era downstream of the bow shock from photo voltaic wind discontinuities. J. Geophys. Res. House Phys. 117, A05228 (2012).

    Article 
    ADS 

    Google Scholar 

  • Kajdič, P., Raptis, S., Blanco-Cano, X. & Karlsson, T. Causes of jets within the quasi-perpendicular magnetosheath. Geophys. Res. Lett. 48, e2021GL093173 (2021).

    Article 
    ADS 

    Google Scholar 

  • Zhou, Y., Shen, C. & Ji, Y. Undulated shock floor shaped after a shock-discontinuity interplay. Geophys. Res. Lett. 50, e2023GL103848 (2023).

    Article 
    ADS 

    Google Scholar 

  • Gunell, H., Hamrin, M., Nesbit-Östman, S., Krämer, E. & Nilsson, H. Magnetosheath jets at mars. Sci. Adv. 9, eadg5703 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Karlsson, T. et al. Remoted magnetic subject buildings in mercury’s magnetosheath as doable analogues for terrestrial magnetosheath plasmoids and jets. Planet. House Sci. 129, 61 (2016).

    Article 
    ADS 

    Google Scholar 

  • Liu, T. Z. et al. THEMIS observations of particle acceleration by a magnetosheath jet-driven bow wave. Geophys. Res. Lett. 46, 7929 (2019).

    Article 
    ADS 

    Google Scholar 

  • Vuorinen, L., Vainio, R., Hietala, H. & Liu, T. Z. Monte Carlo simulations of electron acceleration at bow waves pushed by quick jets within the earth’s magnetosheath. Astrophys. J. 934, 165 (2022).

    Article 
    ADS 

    Google Scholar 

  • Liu, T. Z., Angelopoulos, V., Hietala, H. & Wilson III, L. B. Statistical research of particle acceleration within the core of foreshock transients. J. Geophys. Res. House Phys. 122, 7197 (2017).

    Article 
    ADS 

    Google Scholar 

  • Turner, D. L. et al. Autogenous and environment friendly acceleration of energetic ions upstream of earth’s bow shock. Nature 561, 206 (2018).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Archer, M. O., Turner, D. L., Eastwood, J. P., Horbury, T. S. & Schwartz, S. J. The function of strain gradients in driving sunward magnetosheath flows and magnetopause movement. J. Geophys. Res. House Phys. 119, 8117 (2014).

    Article 
    ADS 

    Google Scholar 

  • Plaschke, F., Hietala, H. & Vörös, Z. Scale sizes of magnetosheath jets. J. Geophys. Res.House Phys. 125, e2020JA027962 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ranquist, D. A. et al. Survey of jupiter’s daybreak magnetosheath utilizing juno. J. Geophys. Res. House Phys. 124, 9106 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ness, N. F. et al. Magnetic subject research at jupiter by voyager 2: Preliminary outcomes. Science 206, 966 (1979).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Richardson, J. D. Ion distributions within the dayside magnetosheaths of jupiter and saturn. J. Geophys. Res. 92, 6133 (1987).

    Article 
    ADS 

    Google Scholar 

  • Pleasure, S. P. Probabilistic fashions of the jovian magnetopause and bow shock places. J. Geophys. Res. 107, 1309 (2002).

    Article 

    Google Scholar 

  • Bagenal, F. et al. Magnetospheric science targets of the juno mission. House Sci. Rev. 213, 219 (2017).

    Article 
    ADS 

    Google Scholar 

  • Siscoe, G. L., Crooker, N. U. & Belcher, J. W. Sunward move in jupiter’s magnetosheath. Geophys. Res. Lett. 7, 25 (1980).

    Article 
    ADS 

    Google Scholar 

  • Lin, Y. World hybrid simulation of sizzling move anomalies close to the bow shock and within the magnetosheath. Planet. House Sci. 50, 577 (2002).

    Article 
    ADS 

    Google Scholar 

  • Valek, P. W. et al. Sizzling move anomaly noticed at jupiter’s bow shock. Geophys. Res. Lett. 44, 8107 (2017).

    Article 
    ADS 

    Google Scholar 

  • Eastwood, J. P. et al. THEMIS observations of a sizzling move anomaly: photo voltaic wind, magnetosheath, and ground-based measurements. Geophys. Res. Lett. 35, L17S03 (2008).

    Article 

    Google Scholar 

  • Šafránková, J., Goncharov, O., Němeček, Z., Pr^ech, L. & Sibeck, D. G. Uneven magnetosphere deformation pushed by sizzling move anomaly(ies). Geophys. Res. Lett. 39, L15107 (2012).

  • Karlsson, T., Raptis, S., Trollvik, H. & Nilsson, H. Classifying the magnetosheath behind the quasi-parallel and quasi-perpendicular bow shock by native measurements. J. Geophys. Res. House Phys. 126, e2021JA029269 (2021).

    Article 
    ADS 

    Google Scholar 

  • Sonnerup, B. U. O. & Scheible, M. Minimal and most variance evaluation, in Evaluation Strategies for Multi-Spacecraft Knowledge, edited by Paschmann, G. & Daly, P. W. (ESA Publications Division, Noordwijk, The Netherlands, 1998) p. 185.

  • Otto, A. & Zhang, H. Bow shock transients brought on by photo voltaic wind dynamic strain depletions. J. Atmos. Sol.-Terrestrial Phys. 218, 105615 (2021).

    Article 

    Google Scholar 

  • Blanco-Cano, X., Preisser, L., Kajdič, P. & Rojas-Castillo, D. Magnetosheath microstructure: Mirror mode waves and jets throughout southward IP magnetic subject. J. Geophys. Res. House Phys. 125, e2020JA027940 (2020).

    Article 
    ADS 

    Google Scholar 

  • Blanco-Cano, X., Rojas-Castillo, D., Kajdič, P. & Preisser, L. Jets and mirror mode waves in earth’s magnetosheath. J. Geophys. Res. House Phys. 128, e2022JA031221 (2023).

    Article 
    ADS 

    Google Scholar 

  • Pleasure, S. P. et al. Mirror mode buildings within the jovian magnetosheath. J. Geophys. Res. 111, A12212 (2006).

    Article 
    ADS 

    Google Scholar 

  • Erdős, G. & Balogh, A. Statistical properties of mirror mode buildings noticed by ulysses within the magnetosheath of jupiter. J. Geophys. Res. House Phys. 101, 1 (1996).

    Article 
    ADS 

    Google Scholar 

  • Hasegawa, A. & Tsurutani, B. T. Mirror mode enlargement in planetary magnetosheaths: Bohm-like diffusion. Phys. Rev. Lett. 107, 245005 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Archer, M. O. & Horbury, T. S. Magnetosheath dynamic strain enhancements: incidence and typical properties. Ann. Geophys. 31, 319 (2013).

    Article 
    ADS 

    Google Scholar 

  • Uritsky, V. M. et al. Energetic present sheets and candidate sizzling move anomalies upstream of mercury’s bow shock. J. Geophys. Res. House Phys. 119, 853 (2014).

    Article 
    ADS 

    Google Scholar 

  • Burlaga, L. F. Intermittent turbulence within the photo voltaic wind. J. Geophys. Res. 96, 5847 (1991).

    Article 
    ADS 

    Google Scholar 

  • Bruno, R. Radial evolution of photo voltaic wind intermittency within the interior heliosphere. J. Geophys. Res. 108, 1130 (2003).

    Article 

    Google Scholar 

  • Wawrzaszek, A., Echim, M., Macek, W. M. & Bruno, R. Evolution of intermittency within the gradual and quick photo voltaic wind past the ecliptic airplane. Astrophys. J. 814, L19 (2015).

    Article 
    ADS 

    Google Scholar 

  • Schwartz, S. J. et al. An energetic present sheet within the photo voltaic wind. Nature 318, 269 (1985).

    Article 
    ADS 

    Google Scholar 

  • Thomas, V. A., Winske, D., Thomsen, M. F. & Onsager, T. G. Hybrid simulation of the formation of a sizzling move anomaly. J. Geophys. Res. House Phys. 96, 11625 (1991).

    Article 
    ADS 

    Google Scholar 

  • Omidi, N. & Sibeck, D. G. Formation of sizzling move anomalies and solitary shocks. J. Geophys. Res. House Phys. 112, A01203 (2007).

    Article 
    ADS 

    Google Scholar 

  • Wang, S., Zong, Q. & Zhang, H. Cluster observations of sizzling move anomalies with massive move deflections: 2. bow shock geometry at HFA edges. J. Geophys. Res. House Phys. 118, 418 (2013).

    Article 
    ADS 

    Google Scholar 

  • Burgess, D. & Schwartz, S. J. Colliding plasma buildings: present sheet and perpendicular shock. J. Geophys. Res. 93, 11327 (1988).

    Article 
    ADS 

    Google Scholar 

  • Schwartz, S. Sizzling move anomalies close to the earth’s bow shock. Adv. House Res. 15, 107 (1995).

    Article 
    ADS 

    Google Scholar 

  • Zhao, L. L., Zong, Q. G., Zhang, H. & Wang, S. Case and statistical research on the evolution of sizzling move anomalies. J. Geophys. Res. House Phys. 120, 6332 (2015).

    Article 
    ADS 

    Google Scholar 

  • Savin, S. et al. Anomalous interplay of a plasma move with the boundary layers of a geomagnetic entice. JETP Lett. 93, 754 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Savin, S. et al. Tremendous quick plasma streams as drivers of transient and anomalous magnetospheric dynamics. Ann. Geophys. 30, 1 (2012).

    Article 
    ADS 

    Google Scholar 

  • Masters, A. et al. Electron acceleration to relativistic energies at a robust quasi-parallel shock wave. Nat. Phys. 9, 164 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ghavamian, P., Schwartz, S. J., Mitchell, J., Masters, A. & Laming, J. M. Electron-ion temperature equilibration in collisionless shocks: the supernova remnant-solar wind connection. House Sci. Rev. 178, 633 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hietala, H. & Plaschke, F. On the technology of magnetosheath high-speed jets by bow shock ripples. J. Geophys. Res. House Phys. 118, 7237 (2013).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Russell, C. T., Hoppe, M. M. & Livesey, W. A. Overshoots in planetary bow shocks. Nature 296, 45 (1982).

    Article 
    ADS 

    Google Scholar 

  • Bertucci, C. et al. The magnetic reminiscence of titan’s ionized environment. Science 321, 1475 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Edberg, N. J. T. et al. Excessive densities in titan’s ionosphere in the course of the t85 magnetosheath encounter. Geophys. Res. Lett. 40, 2879 (2013).

    Article 
    ADS 

    Google Scholar 

  • Behannon, Okay. et al. Magnetic subject experiment for voyagers 1 and a couple of. House Sci. Rev. 21, 235 (1977).

    Article 
    ADS 

    Google Scholar 

  • Bridge, H. et al. The plasma experiment on the 1977 voyager mission. House Sci. Rev. 21, 259 (1977).

    Article 
    ADS 

    Google Scholar 

  • Krimigis, S. et al. The low vitality charged particle (LECP) experiment on the voyager spacecraft. House Sci. Rev. 21, 329 (1977).

    Article 
    ADS 

    Google Scholar 

  • Connerney, J. E. P. et al. The MAVEN magnetic subject investigation. House Sci. Rev. 195, 257 (2015).

    Article 
    ADS 

    Google Scholar 

  • Halekas, J. S. et al. The photo voltaic wind ion analyzer for MAVEN. House Sci. Rev. 195, 125 (2013).

    Article 
    ADS 

    Google Scholar 

  • McFadden, J. P. et al. The THEMIS ESA plasma instrument and in-flight calibration. House Sci. Rev. 141, 277 (2008).

    Article 
    ADS 

    Google Scholar 

  • Thomsen, M. F. et al. Survey of magnetosheath plasma properties at saturn and inference of upstream move circumstances. J. Geophys. Res. House Phys. 123, 2034 (2018).

    Article 
    ADS 

    Google Scholar 

  • Gruesbeck, J. R. et al. The three-dimensional bow shock of mars as noticed by MAVEN. J. Geophys. Res. House Phys. 123, 4542 (2018).

    Article 
    ADS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *