Diverse volcanism and crustal recycling on early Mars

  • O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a file of failure. Philos. Trans. R. Soc. A 376, 20170414 (2018).

    Article 
    ADS 

    Google Scholar 

  • Windley, B. F., Kusky, T. & Polat, A. Onset of plate tectonics by the Eoarchean. Precambrian Res. 352, 105980 (2021).

    Article 

    Google Scholar 

  • Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48, 291–320 (2020).

    Article 
    ADS 

    Google Scholar 

  • van Thienen, P., Vlaar, N. J. & van den Berg, A. P. Plate tectonics on the terrestrial planets. Phys. Earth Planet. Inter. 142, 61–74 (2004).

    Article 
    ADS 

    Google Scholar 

  • Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth-Sci. Rev. 207, 103172 (2020).

    Article 

    Google Scholar 

  • Tanaka, Ok. L. et al. Geologic map of Mars. U.S. Geological Survey http://pubs.usgs.gov/sim/3292/ (2014).

  • Michalski, J. R. et al. The Martian subsurface as a possible window into the origin of life. Nat. Geosci. 11, 21–26 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006).

    Article 
    ADS 

    Google Scholar 

  • Condie, Ok. C. in Evolution of Archean Crust and Early Life, Vol 7. (eds Dilek, Y. & Furnes H.) 179–193 (Springer, 2014); https://doi.org/10.1007/978-94-007-7615-9_7

  • Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest advanced crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).

    Article 
    ADS 

    Google Scholar 

  • Fischer, R. & Gerya, T. Early Earth plume-lid tectonics: a high-resolution 3D numerical modelling method. J. Geodyn. 100, 198–214 (2016).

    Article 

    Google Scholar 

  • Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust attributable to gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article 
    ADS 

    Google Scholar 

  • Van Kranendonk, M. J., Collins, W. J., Hickman, A. & Pawley, M. J. Essential exams of vertical vs. horizontal tectonic fashions for the Archaean East Pilbara Granite–Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res. 131, 173–211 (2004).

    Article 
    ADS 

    Google Scholar 

  • Collins, W. J., Van Kranendonk, M. J. & Teyssier, C. Partial convective overturn of Archaean crust within the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications. J. Struct. Geol. 20, 1405–1424 (1998).

    Article 
    ADS 

    Google Scholar 

  • Papike, J. J., Burger, P. V., Shearer, C. Ok. & McCubbin, F. M. Experimental and crystal chemical research of the basalt–eclogite transition in Mars and implications for Martian magmatism. Geochim. Cosmochim. Acta 104, 358–376 (2013).

    Article 
    ADS 

    Google Scholar 

  • Semprich, J. & Filiberto, J. Excessive-pressure metamorphic mineralogy of the Martian crust with implications for density and seismic profiles. Meteorit. Planet. Sci. 55, 1600–1614 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zhou, W.-Y. et al. Excessive pressure-temperature part equilibrium research on Martian basalts: Implications for the failure of plate tectonics on Mars. Earth Planet. Sci. Lett. 594, 117751 (2022).

    Article 

    Google Scholar 

  • Payré, V., Salvatore, M. R. & Edwards, C. S. An advanced early crust uncovered on Mars revealed by means of spectroscopy. Geophys. Res. Lett. 49, e2022GL099639 (2022).

    Article 
    ADS 

    Google Scholar 

  • Sautter, V. et al. In situ proof for continental crust on early Mars. Nat. Geosci. https://doi.org/10.1038/ngeo2474 (2015).

    Article 

    Google Scholar 

  • Wray, J. J. et al. Extended magmatic exercise on Mars inferred from the detection of felsic rocks. Nat. Geosci. https://doi.org/10.1038/ngeo1994 (2013).

    Article 

    Google Scholar 

  • Carter, J. & Poulet, F. Historic plutonic processes on Mars inferred from the detection of attainable anorthositic terrains. Nat. Geosci. 6, 1008–1012 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bandfield, J. L., Hamilton, V. E., Christensen, P. R. & McSween, H. Y. Identification of quartzofeldspathic supplies on Mars. J. Geophys. Res. 109, E10009 (2004).

    ADS 

    Google Scholar 

  • Christensen, P. R. et al. Proof for magmatic evolution and variety on Mars from infrared observations. Nature 436, 504–509 (2005).

    Article 
    ADS 

    Google Scholar 

  • Bandfield, J. L. Prolonged floor exposures of granitoid compositions in Syrtis Main, Mars. Geophys. Res. Lett. 33, L06203 (2006).

    Article 
    ADS 

    Google Scholar 

  • Connerney, J. E. P. et al. Tectonic implications of Mars crustal magnetism. Proc. Natl Acad. Sci. USA 102, 14970–14975 (2005).

    Article 
    ADS 

    Google Scholar 

  • Boynton, W. V. et al. Focus of H, Si, Cl, Ok, Fe, and Th within the low- and mid-latitude areas of Mars. J. Geophys. Res. Planets 112, E12S99, https://doi.org/10.1029/2007JE002887 (2007).

    Article 
    ADS 

    Google Scholar 

  • Goossens, S. et al. Proof for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44, 7686–7694 (2017).

    Article 
    ADS 

    Google Scholar 

  • Brož, P., Bernhardt, H., Conway, S. J. & Parekh, R. An outline of explosive volcanism on Mars. J. Volcanol. Geotherm. Res. 409, 107125 (2021).

    Article 

    Google Scholar 

  • Molina, A., de Pablo, M. Á., Hauber, E., Le Deit, L. & Fernández-Remolar, D. (Carlos). Geology of the Ariadnes Basin, NE Eridania quadrangle, Mars – 1:1Million. J. Maps 10, 487–499 (2014).

    Article 

    Google Scholar 

  • Wilson, L. & Head, J. W. Tharsis-radial graben programs because the floor manifestation of plume-related dike intrusion complexes: Fashions and implications. J. Geophys. Res. 107, 1-1–1-24 (2002).

    Google Scholar 

  • Brož, P., Hauber, E., Platz, T. & Balme, M. Proof for Amazonian extremely viscous lavas within the southern highlands on Mars. Earth Planet. Sci. Lett. 415, 200–212 (2015).

    Article 
    ADS 

    Google Scholar 

  • Bouley, S. et al. A thick crustal block revealed by reconstructions of early Mars highlands. Nat. Geosci. 13, 105–109 (2020).

    Article 
    ADS 

    Google Scholar 

  • Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Historic hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    Article 
    ADS 

    Google Scholar 

  • Xiao, L. et al. Historic volcanism and its implication for thermal evolution of Mars. Earth Planet. Sci. Lett. 323–324, 9–18 (2012).

    Article 
    ADS 

    Google Scholar 

  • Scott, E. D., Wilson, L. & Head, J. W. H. III Emplacement of big radial dikes within the northern Tharsis area of Mars. J. Geophys. Res. 107, 3-1–3-10 (2002).

    Google Scholar 

  • Grant, J. A. et al. HiRISE views enigmatic deposits within the Sirenum Fossae area of Mars. Icarus 205, 53–63 (2010).

    Article 
    ADS 

    Google Scholar 

  • Kerber, L., Head, J. W., Madeleine, J. B., Overlook, F. & Wilson, L. The dispersal of pyroclasts from historical explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219, 358–381 (2012).

    Article 
    ADS 

    Google Scholar 

  • Michalski, J. R. & Bleacher, J. E. Supervolcanoes inside an historical volcanic province in Arabia Terra, Mars. Nature 502, 47–52 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wilson, L. Volcanism within the photo voltaic system. Nat. Geosci. https://doi.org/10.1038/ngeo529 (2009).

    Article 

    Google Scholar 

  • Greeley, R. & Spudis, P. Volcanism on Mars. Rev. Geophys. 19, 13–41 (1981).

    Article 
    ADS 

    Google Scholar 

  • Xiao, L. et al. Historic volcanism and its implications for thermal evolution of Mars. Earth Planet. Sci. Lett. 323–324, 9–18 (2012).

    Article 
    ADS 

    Google Scholar 

  • Bandfield, J. L., Edwards, C. S., Montgomery, D. R. & Model, B. D. The twin nature of the Martian crust: Younger lavas and previous clastic supplies. Icarus 222, 188–199 (2013).

    Article 
    ADS 

    Google Scholar 

  • Cowart, J. C., Rogers, A. D. & Edwards, C. S. Mapping and characterization of Martian intercrater bedrock plains: insights into resurfacing processes within the Martian cratered highlands. J. Geophys. Res. Planets 124, 3181–3204 (2019).

    Article 
    ADS 

    Google Scholar 

  • Rogers, A. D. & Nekvasil, H. Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and attainable formation mechanisms. Geophys. Res. Lett. https://doi.org/10.1002/2015GL063501 (2015).

    Article 

    Google Scholar 

  • Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and related paleolake basins. J. Geophys. Res. 109, E12009 (2004).

    ADS 

    Google Scholar 

  • Connerney, J. E. Magnetic lineations within the historical crust of Mars. Sci. 284, 794–798 (1999).

    Article 
    ADS 

    Google Scholar 

  • Nimmo, F. Dike intrusion as a attainable explanation for linear Martian magnetic anomalies. Geology 28, 391–394 (2000).

    Article 
    ADS 

    Google Scholar 

  • Damer, B. & Deamer, D. The recent spring speculation for an origin of life. Astrobiology 20, 429–452 (2020).

    Article 
    ADS 

    Google Scholar 

  • Russell, M. J. et al. The drive to life on moist and icy worlds. Astrobiology 14, 308–343 (2014).

    Article 
    ADS 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *