Microbial applications for sustainable space exploration beyond low Earth orbit

  • Loff, S. & Lind, R. Past Earth Increasing Human Presence into the Photo voltaic System. https://www.nasa.gov/exploration/dwelling/why_moon.html (2011).

  • Dunbar, B. Artemis. https://www.nasa.gov/what-is-artemis (2021).

  • Artemis Plan NASA’s Lunar Exploration Program Overview. https://www.nasa.gov/websites/default/recordsdata/atoms/recordsdata/artemis_plan-20200921.pdf (2020).

  • How Investing within the Moon Prepares NASA for First Human Mission to Mars. https://www.nasa.gov/websites/default/recordsdata/atoms/recordsdata/moon-investments-prepare-us-for-mars.pdf (2021).

  • Orion Reference Information. (NASA Johnson House Middle). https://www.nasa.gov/websites/default/recordsdata/atoms/recordsdata/orion_reference_guide_0.pdf (2022).

  • Mars, Okay. Gateway. NASA. https://www.nasa.gov/gateway/overview (2023).

  • Atkinson, J. & Spears, S. NASA Searching for BIG Concepts for Photo voltaic Energy on Mars. https://www.nasa.gov/press-release/langley/nasa-seeking-big-ideas-for-solar-power-on-mars (2017).

  • Mars Report: Mud Storms on Mars. https://mars.nasa.gov/sources/26555/mars-report-dust-storms-on-mars/?web site=perception (2022).

  • Kawamoto, H., Uchiyama, M., Cooper, B. L. & McKay, D. S. Mitigation of lunar mud on photo voltaic panels and optical parts using electrostatic traveling-wave. J. Electrostat. 69, 370–379 (2011).

    Article 
    CAS 

    Google Scholar 

  • Stubbs, T. J. et al. On the function of mud within the lunar ionosphere. Planet House Sci. 59, 1659–1664 (2011).

    Article 
    CAS 

    Google Scholar 

  • NASA Mars 2020 Mission Perseverance Rover Cruise. https://mars.nasa.gov/mars2020/timeline/cruise/.

  • NASA Mars 2020 Mission Perseverance Rover Communications. https://mars.nasa.gov/mars2020/spacecraft/rover/communications/.

  • Gilbert, J. A. et al. Present understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, I. & Blaser, M. J. The human microbiome: on the interface of well being and illness. Nat. Rev. Genet. 13, 260–270 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Intestine microbiota: function in pathogen colonization, immune responses, and inflammatory illness. Immunol. Rev. 279, 70–89 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LeBlanc, J. G. et al. Micro organism as vitamin suppliers to their host: a intestine microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batista, B. D. & Singh, B. Okay. Realities and hopes within the utility of microbial instruments in agriculture. Micro. Biotechnol. 14, 1258–1268 (2021).

    Article 

    Google Scholar 

  • Abhilash, P. C., Dubey, R. Okay., Tripathi, V., Gupta, V. Okay. & Singh, H. B. Plant growth-promoting microorganisms for environmental sustainability. Traits Biotechnol. 34, 847–850 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • dos Santos Lopes, M. J., Dias-Filho, M. B. & Gurgel, E. S. C. Profitable plant growth-promoting microbes: inoculation strategies and abiotic components. Entrance. Maintain. Meals Syst. 5, (2021).

  • Caplice, E. Meals fermentations: function of microorganisms in meals manufacturing and preservation. Int. J. Meals Microbiol. 50, 131–149 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial range. Nature 551, 457–463 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gougoulias, C., Clark, J. M. & Shaw, L. J. The function of soil microbes within the international carbon cycle: monitoring the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural methods. J. Sci. Meals Agric. 94, 2362–2371 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant range and productiveness in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Barberán, A. The microbial contribution to macroecology. Entrance. Microbiol. 5, 203 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horve, P. F. et al. Constructing upon present data and methods of indoor microbiology to assemble the following period of idea into microorganisms, well being, and the constructed setting. J. Publicity Sci. Amp. Environ. Epidemiol. 30, 219–235 (2019).

    Article 

    Google Scholar 

  • Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9, eaah6500 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake, B. G., Hoffman, S. J. & Beaty, D. W. Human exploration of Mars, Design Reference Structure 5.0. in 2010 IEEE Aerospace Convention (IEEE, 2010). https://doi.org/10.1109/aero.2010.5446736.

  • Microbiologist, A. J. The BioHome: A derivative of house expertise. NASA, Washington, Organic Life Help Applied sciences: Industrial Alternatives (1990).

  • Salisbury, F. B., Gitelson, J. I. & Lisovsky, G. M. Bios-3: Siberian experiments in bioregenerative life help. Bioscience 47, 575–585 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, J. & Granjou, C. MELiSSA the minimal biosphere: human life, waste and refuge in deep house. Futures 92, 59–69 (2017).

    Article 

    Google Scholar 

  • Fu, Y. et al. Learn how to set up a bioregenerative life help system for long-term crewed missions to the moon or mars. Astrobiology 16, 925–936 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Area, C. et al. Suitability of Solanum lycopersicum L. ‘Microtom’ for development in Bioregenerative Life Help Programs: exploring the impact of high-scpLET/scpionising radiation on photosynthesis, leaf construction and fruit traits. Plant Biol. 21, 615–626 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Desiderio, A. et al. Results of simulated house radiations on the tomato root proteome. Entrance. Plant Sci. 10, 1334 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Aggressive development assay of mutagenized Chlamydomonas reinhardtii suitable with the worldwide house station veggie plant development chamber. Entrance. Plant Sci. 11, 631 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barker, R., Lombardino, J., Rasmussen, Okay. & Gilroy, S. Take a look at of Arabidopsis house transcriptome: a discovery setting to discover a number of plant biology spaceflight experiments. Entrance. Plant Sci. 11, 147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heiney, A. Rising Vegetation in House. (2019).

  • Massa, G. D. et al. VEG-01: Veggie {hardware} validation testing on the worldwide house station. Open Agric. 2, 33–41 (2017).

    Article 

    Google Scholar 

  • Hummerick, M. E. et al. Spatial characterization of microbial communities on multi-species leafy greens grown concurrently within the vegetable manufacturing methods on the worldwide house station. Life 11, 1060 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jarvis, W. R. Managing illnesses is greenhouse crops. Plant Dis. 73, 190 (1989).

    Article 

    Google Scholar 

  • Bishop, D. L., Levine, H. G., Kropp, B. R. & Anderson, A. J. Seedborne fungal contamination: penalties in space-grown wheat. Phytopathology 87, 1125–1133 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ryba-White, M. et al. Progress in microgravity will increase susceptibility of soybean to a fungal pathogen. Plant Cell Physiol. 42, 657–664 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schuerger, A. C. et al. Fusarium oxysporum as an Opportunistic Fungal Pathogen on Zinnia hybrida Vegetation Grown on board the Worldwide House Station. Astrobiology 21, 1029–1048 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urbaniak, C. et al. Draft Genome Sequences of Two Fusarium oxysporum Isolates Cultured from Contaminated Zinnia hybrida Vegetation Grown on the Worldwide House Station. Genome Announc. 6, e00326–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaets, I. et al. Bioaugmentation in rising crops for lunar bases. Adv. House Res. 47, 1071–1078 (2011).

    Article 
    CAS 

    Google Scholar 

  • Wamelink, G. W. W., Frissel, J. Y., Krijnen, W. H. J., Verwoert, M. R. & Goedhart, P. W. Can crops develop on Mars and the Moon: a development experiment on Mars and Moon soil simulants. PLoS ONE 9, e103138 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paul, A. L., Elardo, S. M. & Ferl, R. Vegetation grown in Apollo lunar regolith current stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 5, 1–9 (2022).

    Article 

    Google Scholar 

  • Kozyrovska, N. O. et al. Rising pioneer crops for a lunar base. Adv. House Res. 37, 93–99 (2006).

    Article 

    Google Scholar 

  • Ferl, R. J. & Paul, A. L. Lunar plant biology-a overview of the Apollo period. Astrobiology 10, 261–274 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Brack, A. & Pillinger, C. T. Life on Mars: chemical arguments and clues from Martian meteorites. Extremophiles 2, 313–319 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parnell, J. Extraction of natural signatures from carbonates and evaporites: from mineral deposits to Mars. Proc. Geologists Assoc. 116, 281–291 (2005).

    Article 

    Google Scholar 

  • Müller, O. Photo voltaic wind nitrogen and indigenous nitrogen in lunar materials. Phys. Chem. Earth 11, 47–59 (1979).

    Article 

    Google Scholar 

  • Palomba, E. et al. Proof for Mg-rich carbonates on Mars from a 3.9m absorption characteristic. Icarus 203, 58–65 (2009).

    Article 
    CAS 

    Google Scholar 

  • Leshin, L. A. et al. Risky, isotope, and natural evaluation of Martian fines with the Mars curiosity rover. Science 341, 1238937 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mylona, P., Pawlowski, Okay. & Bisseling, T. Symbiotic nitrogen fixation. Plant Cell 7, 869 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, F., Dobbs, J., Atkins, D., Ippolito, J. A. & Stewart, J. E. Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith results on nitrogen content material and plant well being. PLoS ONE 16, e0257053 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ralphs, M., Franz, B., Baker, T. & Howe, S. Water extraction on Mars for an increasing human colony. Life Sci. House Res. 7, 57–60 (2015).

    Article 
    CAS 

    Google Scholar 

  • Maggi, F. & Pallud, C. Martian base agriculture: The impact of low gravity on water move, nutrient cycles, and microbial biomass dynamics. Adv. House Res. 46, 1257–1265 (2010).

    Article 
    CAS 

    Google Scholar 

  • Sher, Y. et al. Microbial extracellular polysaccharide manufacturing and combination stability managed by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biol. Biochem. 143, 107742 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nascimento, Mdo et al. Prospects of utilizing biomass of N2-fixing cyanobacteria as an natural fertilizer and soil conditioner. Algal Res. 43, 101652 (2019).

    Article 

    Google Scholar 

  • Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, Okay. & Megharaj, M. Soil microalgae and cyanobacteria: the biotechnological potential within the upkeep of soil fertility and well being. Crit. Rev. Biotechnol. 39, 981–998 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Li, C. et al. Traits of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9, (2022).

  • Singh, J. & Kalamdhad, A. Results of heavy metals on soil, crops, human well being and aquatic life. Int. J. Res. Chem. Environ. 1, (2011).

  • Abbas, S. Z. & Rafatullah, M. Current advances in soil microbial gas cells for soil contaminants remediation. Chemosphere 272, 129691 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ayangbenro, A. S. & Babalola, O. O. A brand new technique for heavy steel polluted environments: a overview of microbial biosorbents. Int. J. Environ. Res. Public Well being 14, 94 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. et al. Immobilization of microbes on biochar for water and soil remediation: a overview. Environ. Res. 212, 113226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, M. S., Pan, J. & Zheng, L. P. Elimination of heavy metals from aqueous options utilizing micro organism. J. Shanghai Univ. 5, 253–259 (2001).

    Article 

    Google Scholar 

  • González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of micro organism related to the plant microbiome. Entrance. Environ. Sci. 9, (2021).

  • Yetunde Mutiat, F.-B., Gbolahan, B. & Olu, O. A comparative research of the wild and mutatedheavy steel resistant Klebsiella variicola generated for cadmium bioremediation. Bioremediat. J. 22, 1–15 (2018).

    Article 

    Google Scholar 

  • Ounces, C. et al. Perchlorate and agriculture on Mars. Soil Syst. 5, 37 (2021).

    Article 
    CAS 

    Google Scholar 

  • Eichler, A. et al. Difficult the agricultural viability of martian regolith simulants. Icarus 354, 114022 (2021).

    Article 

    Google Scholar 

  • Wang, X. et al. Microbial electrochemistry for bioremediation. Environ. Sci. Ecotechnol. 1, 100013 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarria, M., Gonzales, J. M., Gerrity, D. & Batista, J. Organic discount of nitrate and perchlorate in soil microcosms: an electron donor comparability of glycerol, emulsified oil, and mulch extract. Groundw. Monit. Remediation 39, 32–42 (2018).

    Article 

    Google Scholar 

  • Misra, G., Smith, W., Garner, M. & Loureiro, R. Potential organic remediation methods for eradicating perchlorate from Martian regolith. N. House 9, 217–227 (2021).

    Article 

    Google Scholar 

  • Sunilkumar, U. & LAL, S. Perchlorate lowering micro organism and their perception in the direction of astrobiology. Int. J. Res. Anal. Rev. 8, (2021).

  • Ewert, M. Okay. et al. Superior Life Help Necessities, Assumptions and Reference Missions. in SAE Technical Paper Sequence (SAE Worldwide, 2002). https://doi.org/10.4271/2002-01-2480.

  • Liu, H., Yao, Z., Fu, Y. & Feng, J. Evaluate of analysis into bioregenerative life help system(s) which may help people dwelling in house. Life Sci. House Res. 31, 113–120 (2021).

    Article 

    Google Scholar 

  • Garland, J. Coupling plant development and waste recycling methods in a managed life help system (CELSS). NTRS, (1992).

  • Tang, Y. et al. Design and institution of a large-scale managed ecological life-support system built-in experimental platform. Life Sci. House Res. 31, 121–130 (2021).

    Article 

    Google Scholar 

  • Xie, B. et al. The water remedy and recycling in 105-day bioregenerative life help experiment within the Lunar Palace 1. Acta Astronaut. 140, 420–426 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tikhomirov, A. A. et al. Evaluation of the opportunity of establishing materials biking in an experimental mannequin of the bio-technical life help system with plant and human wastes included in mass change. Acta Astronaut. 68, 1548–1554 (2011).

    Article 
    CAS 

    Google Scholar 

  • He, W., Liu, H., Xing, Y. & Jones, S. B. Comparability of three soil-like substrate manufacturing methods for a bioregenerative life help system. Adv. House Res. 46, 1156–1161 (2010).

    Article 
    CAS 

    Google Scholar 

  • Yu, C. et al. Bioconversion of rice straw right into a soil-like substrate. Acta Astronaut. 63, 1037–1042 (2008).

    Article 
    CAS 

    Google Scholar 

  • Hendrickx, L. et al. Microbial ecology of the closed synthetic ecosystem MELiSSA (Micro-Ecological Life Help System Different): reinventing and compartmentalizing the Earths meals and oxygen regeneration system for long-haul house exploration missions. Res. Microbiol. 157, 77–86 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, G. et al. Analysis on the hydrolysis of human urine utilizing organic activated carbon and its utility in bioregenerative life help system. Acta Astronaut. 155, 191–199 (2019).

    Article 
    CAS 

    Google Scholar 

  • Putnam, D. F. Composition and concentrative properties of human urine. Nationwide Aeronautics and House Administration Contractor Report. Huntington Seaside, California: McDonnell Douglas Astronautics Firm – Western Division. (1971).

  • Maggi, F., Tang, F. H. M., Pallud, C. & Gu, C. A urine-fuelled soil-based bioregenerative life help system for long-term and long-distance manned house missions. Life Sci. House Res. 17, 1–14 (2018).

    Article 

    Google Scholar 

  • Subbarao, G., Yorio, N., Wheeler, R. & Stutte, G. Plant Progress and Human Life Help for House Journey. In Handbook of Plant and Crop Physiology (CRC Press, 2001). https://doi.org/10.1201/9780203908426.ch48.

  • Garland, J. L., Levine, L. H., Yorio, N. C. & Hummerick, M. E. Response of graywater recycling methods primarily based on hydroponic plant development to a few lessons of surfactants. Water Res. 38, 1952–1962 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garland, J. Graywater processing in recirculating hydroponic methods: phytotoxicity, surfactant degradation, and bacterial dynamics. Water Res. 34, 3075–3086 (2000).

    Article 
    CAS 

    Google Scholar 

  • Horneck, G. et al. Humex, a research on the survivability and adaptation of people to long-duration exploratory missions, half I: Lunar missions. Adv. House Res. 31, 2389–2401 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosgaard, L., de Porcellinis, A. J., Jacobsen, J. H., Frigaard, N.-U. & Sakuragi, Y. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and crops. J. Biotechnol. 162, 134–147 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zahra, Z., Choo, D. H., Lee, H. & Parveen, A. Cyanobacteria: overview of present potentials and functions. Environments 7, 13 (2020).

    Article 

    Google Scholar 

  • Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the primary look of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gan, F. & Bryant, D. A. Adaptive and acclimative responses of cyanobacteria to far-red mild. Environ. Microbiol. 17, 3450–3465 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gan, F. et al. In depth reworking of a cyanobacterial photosynthetic equipment in far-red mild. Science 345, 1312–1317 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gisriel, C. J. et al. Construction of a photosystem I-ferredoxin complicated from a marine cyanobacterium gives insights into far-red mild photoacclimation. J. Biol. Chem. 298, 101408 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rabbow, E. et al. EXPOSE-R2: The Astrobiological ESA Mission on Board of the Worldwide House Station. Entrance. Microbiol. 8, 1533 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabbow, E. et al. EXPOSE, an astrobiological publicity facility on the worldwide house station – from proposal to flight. Orig. Life Evol. Biospheres 39, 581–598 (2009).

    Article 

    Google Scholar 

  • Billi, D. et al. A desert cyanobacterium underneath simulated Mars-like circumstances in low earth orbit: implications for the habitability of Mars. Astrobiology 19, 158–169 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fleming, E. D., Bebout, B. M., Tan, M. X., Selch, F. & Ricco, A. J. Organic system growth for GraviSat: A brand new platform for learning photosynthesis and microalgae in house. Life Sci. House Res. 3, 63–75 (2014).

    Article 

    Google Scholar 

  • Gòdia, F. et al. MELISSA: a loop of interconnected bioreactors to develop life help in House. J. Biotechnol. 99, 319–330 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Poughon, L., Creuly, C., Godia, F., Leys, N. & Dussap, C.-G. Photobioreactor Limnospira indica development mannequin: utility from the MELiSSA plant pilot scale to ISS flight experiment. Entrance. Astron. House Sci. 8, (2021).

  • Detrell, G. Chlorella vulgaris photobioreactor for oxygen and meals manufacturing on a Moon basepotential and challenges. Entrance. Astron. House Sci. 8, (2021).

  • Häder, D. On the best way to Mars flagellated algae in bioregenerative life help methods underneath microgravity circumstances. Entrance. Plant Sci. 10, 1621 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sachdeva, N. et al. Floor demonstration of the usage of limnospira indica for air revitalization in a bioregenerative life-support system setup: impact of non-nitrified urinederived nitrogen sources. Entrance. Astron. House Sci. 8, (2021).

  • Poughon, L. et al. Limnospira indica PCC8005 development in photobioreactor: mannequin and simulation of the ISS and floor experiments. Life Sci. House Res. 25, 53–65 (2020).

    Article 

    Google Scholar 

  • Kyazze, G. 4 methods microbial gas cells would possibly revolutionise electrical energy manufacturing sooner or later. The Dialog https://theconversation.com/four-ways-microbial-fuel-cells-might-revolutionise-electricity-production-in-the-future-152184 (2020).

  • Logan, B. E. Microbial Gasoline Cells. (John Wiley & Sons, Inc., 2007).

  • Arkatkar, A., Mungray, A. Okay. & Sharma, P. Examine of electrochemical exercise zone of Pseudomonas aeruginosa in microbial gas cell. Course of Biochem. 101, 213–217 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lin, T. et al. Artificial Saccharomyces cerevisiae – Shewanella oneidensis consortium allows glucose-fed high-performance microbial gas cell. AIChE J. 63, 1830–1838 (2016).

    Article 

    Google Scholar 

  • Kondaveeti, S., Lee, S.-H., Park, H.-D. & Min, B. Particular enrichment of various Geobacter sp. in anode biofilm by various interspatial distance of electrodes in air-cathode microbial gas cell (MFC). Electrochim. Acta 331, 135388 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vasyliv, O. M., Maslovska, O. D., Ferensovych, Y. P., Bilyy, O. I. & Hnatush, S. O. Interconnection between tricarboxylic acid cycle and vitality era in microbial gas cell carried out by desulfuromonas acetoxidans IMV B-7384. in Vitality Harvesting and Storage: Supplies, Units, and Purposes VI (eds. Dhar, N. Okay. & Dutta, A. Okay.) (SPIE, 2015).

  • Ren, H., Tian, H., Gardner, C. L., Ren, T.-L. & Chae, J. A miniaturized microbial gas cell with three-dimensional graphene macroporous scaffold anode demonstrating a file energy density of over 100.167em000 W msup-3/sup. Nanoscale 8, 3539–3547 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trapero, J. R., Horcajada, L., Linares, J. J. & Lobato, J. Is microbial gas cell expertise prepared? An financial reply in the direction of industrial commercialization. Appl. Vitality 185, 698–707 (2017).

    Article 
    CAS 

    Google Scholar 

  • Potter, M. C. Electrical results accompanying the decomposition of natural compounds. Proc. R. Soc. Lond. Sequence B, Containing Papers of a Organic Character 84, 260–276 (1911).

  • Zhang, J. et al. Life cycle evaluation of osmotic microbial gas cells for simultaneous wastewater remedy and useful resource restoration. Int J. Life Cycle Assess. 24, 1962–1975 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cao, X., Music, H., Yu, C. & Li, X. Simultaneous degradation of poisonous refractory natural pesticide and bioelectricity era utilizing a soil microbial gas cell. Bioresour. Technol. 189, 87–93 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bose, D., Santra, M., Sanka, R. V. S. P. & Krishnakumar, B. Bioremediation evaluation of sediment microbial gas cells for vitality restoration from microbial exercise in soil. Int. J. Vitality Res. 45, 6436–6445 (2020).

    Article 

    Google Scholar 

  • Ieropoulos, I., Greenman, J. & Melhuish, C. Improved vitality output ranges from small-scale microbial gas cells. Bioelectrochemistry 78, 44–50 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linares, R. V. et al. Scale up of microbial gas cell stack system for residential wastewater remedy in steady mode operation. Water 11, 217 (2019).

    Article 
    CAS 

    Google Scholar 

  • de Vet, S. J. & Rutgers, R. From waste to vitality: First experimental bacterial gas cells onboard the worldwide house station. Microgravity Sci. Technol. 19, 225–229 (2007).

    Article 

    Google Scholar 

  • Electrified Micro organism Clear Wastewater, Generate Energy | NASA Spinoff. https://spinoff.nasa.gov/Spinoff2019/ee_1.html.

  • Cid, C. A., Stinchcombe, A., Ieropoulos, I. & Hoffmann, M. R. Urine microbial gas cells in a semi-controlled setting for onsite urine pre-treatment and electrical energy manufacturing. J. Energy Sources 400, 441–448 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, S. et al. Useful resource restoration microbial gas cells for urine-containing wastewater remedy with out exterior vitality consumption. Chem. Eng. J. 373, 1072–1080 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yang, N., Liu, H., Jin, X., Li, D. & Zhan, G. One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and cardio denitrification in air-exposed biocathode microbial gas cells (AEB-MFCs). Sci. Whole Environ. 748, 141379 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ieropoulos, I., Greenman, J. & Melhuish, C. Urine utilisation by microbial gas cells vitality gas for the longer term. Phys. Chem. Chem. Phys. 14, 94–98 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, X. et al. A brand new technique for water desalination utilizing microbial desalination. Cells Environ. Sci. Amp Technol. 43, 7148–7152 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fangzhou, D., Zhenglong, L., Shaoqiang, Y., Beizhen, X. & Hong, L. Electrical energy era immediately utilizing human feces wastewater for all times help system. Acta Astronaut. 68, 1537–1547 (2011).

    Article 

    Google Scholar 

  • Colombo, A. et al. Sign tendencies of microbial gas cells fed with totally different food-industry residues. Int. J. Hydrog. Vitality 42, 1841–1852 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gajda, I. et al. Miniaturized ceramic-based microbial gas cell for environment friendly energy era from urine and stack growth. Entrance. Vitality Res. 6, 84 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajda, I., Obata, O., Salar-Garcia, M. J., Greenman, J. & Ieropoulos, I. A. Lengthy-term bio-power of ceramic microbial gas cells in particular person and stacked configurations. Bioelectrochemistry 133, 107459 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ieropoulos, I. A. et al. Pee energy urinal microbial gas cell expertise area trials within the context of sanitation. Environ. Sci.: Water Res. Amp. Technol. 2, 336–343 (2016).

    CAS 

    Google Scholar 

  • Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon move within the rhizosphere: carbon buying and selling on the soilroot interface. Plant Soil 321, 5–33 (2009).

    Article 
    CAS 

    Google Scholar 

  • Schamphelaire, Lde et al. Microbial gas cells producing electrical energy from rhizodeposits of rice. Vegetation Environ. Sci. Amp. Technol. 42, 3053–3058 (2008).

    Article 

    Google Scholar 

  • Lee, R. & Miller, A. A novel method to harvesting vitality from agriculture in microbe-polluted water: the implementation of plant microbial gas cells in hydroponic chambers. Columbia Junior Sci. J. (2018).

  • Habibul, N., Hu, Y. & Sheng, G. P. Microbial gas cell driving electrokinetic remediation of poisonous steel contaminated soils. J. Hazard Mater. 318, 9–14 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 present elevated electrogenic exercise in organic photo-voltaic methods. Phys. Chem. Chem. Phys. 15, 13611 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MeiRong, M., LiMin, C., XiaoFang, Y. & ZongWu, D. Examine on the efficiency of photosynthetic microbial gas cells powered by synechocystis PCC-6803. Kezaisheng Nengyuan / Renew. Vitality Resour. 30, 42–46 (2012).

    Google Scholar 

  • Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes improve present era from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dawar, S., Behera, B. Okay. & Mohanty, P. Improvement of a low-cost oxy-hydrogen bio-fuel cell for era of electrical energy utilizing Nostoc as a supply of hydrogen. Int. J. Vitality Res. 22, 1019–1028 (1998).

    Article 
    CAS 

    Google Scholar 

  • Güttler, J. et al. Direct electron transport as a doable mechanism of electrogenic exercise throughout a spread of benthic cyanobacteria in a photosynthetic microbial gas cell. N. Z. J. Bot. 58, 378–388 (2020).

    Article 

    Google Scholar 

  • Pisciotta, J. M., Zou, Y. & Baskakov, I. V. Position of the photosynthetic electron switch chain in electrogenic exercise of cyanobacteria. Appl. Microbiol. Biotechnol. 91, 377–385 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oluyide, O. O. et al. Impact of some operational circumstances on bioelectricity manufacturing in algal gas cell. Int. J. Renew. Vitality Technol. 11, 70 (2020).

    Article 

    Google Scholar 

  • Maity, J. P. et al. The manufacturing of biofuel and bioelectricity related to wastewater remedy by inexperienced algae. Vitality 78, 94–103 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, S., Sarma, M. Okay. & Goswami, P. FRET-guided surging of cyanobacterial photosystems improves and stabilizes present in photosynthetic microbial gas cell. J. Mater. Chem. A Mater. 5, 7885–7895 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wall, M. Nuclear Reactor for Mars Outpost Might Be Able to Fly by 2022 | House. House.com https://www.house.com/nuclear-reactor-for-mars-outpost-2022.html (2019).

  • Voutsinos, M. Biomining the weather of the longer term. The Dialog https://theconversation.com/biomining-the-elements-of-the-future-87621 (2018).

  • Olson, G. J., Sakai, C. Okay., Parks, E. J. & Brinckman, F. E. Bioleaching of cobalt from smelter wastes by Thiobacillus ferrooxidans. J. Ind. Microbiol. 6, 49–52 (1990).

    Article 
    CAS 

    Google Scholar 

  • Giaveno, A., Lavalle, L., Chiacchiarini, P. & Donati, E. Bioleaching of zinc from low-grade complicated sulfide ores in an airlift by remoted Leptospirillum ferrooxidans. Hydrometallurgy 89, 117–126 (2007).

    Article 
    CAS 

    Google Scholar 

  • Clark, D. A. & Norris, P. R. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiol. (N. Y) 142, 785–790 (1996).

    CAS 

    Google Scholar 

  • Rawlings, D. E. Traits and flexibility of iron- and sulfur-oxidizing microorganisms used for the restoration of metals from minerals and their concentrates. Micro. Cell Reality. 4, 13 (2005).

    Article 

    Google Scholar 

  • Solisio, C., Lodi, A. & Veglio, F. Bioleaching of zinc and aluminium from industrial waste sludges by way of Thiobacillus ferrooxidans. Waste Manag. 22, 667–675 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pronk, J. T. & Johnson, D. B. Oxidation and discount of iron by acidophilic micro organism. Geomicrobiol. J. 10, 153–171 (1992).

    Article 
    CAS 

    Google Scholar 

  • Deveci, H., Akcil, A. & Alp, I. Bioleaching of complicated zinc sulphides utilizing mesophilic and thermophilic micro organism: comparative significance of pH and iron. Hydrometallurgy 73, 293–303 (2004).

    Article 
    CAS 

    Google Scholar 

  • McSween, H. Y., Taylor, G. J. & Wyatt, M. B. Elemental composition of the martian crust. Science 324, 736–739 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruzicka, A., Snyder, G. A. & Taylor, L. A. Comparative geochemistry of basalts from the moon, earth, HED asteroid, and Mars: implications for the origin of the moon. Geochim Cosmochim. Acta 65, 979–997 (2001).

    Article 
    CAS 

    Google Scholar 

  • Doody, D. Deep House Craft (Springer Berlin Heidelberg, 2009).

  • Loudon, C.-M. et al. BioRock: new experiments and {hardware} to analyze microbemineral interactions in house. Int. J. Astrobiol. 17, 303–313 (2017).

    Article 

    Google Scholar 

  • Cockell, C. S. et al. House station biomining experiment demonstrates uncommon earth ingredient extraction in microgravity and Mars gravity. Nat. Commun. 11, 5523 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cockell, C. S. et al. Microbially-enhanced vanadium mining and bioremediation underneath micro- and Mars gravity on the worldwide house station. Entrance. Microbiol. 12 (2021).

  • Yin, S., Wang, L., Wu, A., Free, M. L. & Kabwe, E. Enhancement of copper restoration by acid leaching of high-mud copper oxides: a case research at Yangla Copper Mine, China. J. Clear. Prod. 202, 321–331 (2018).

    Article 
    CAS 

    Google Scholar 

  • Prepare dinner, R. T. Methane warmth switch investigation. Contractor Report. https://ntrs.nasa.gov/citations/19850004010 (1984).

  • Harbaugh, J. NASA 3-D Prints First Full-Scale Copper Rocket Engine Half. (2015).

  • Sonter, M. J. The technical and financial feasibility of mining the near-earth asteroids. Acta Astronaut. 41, 637–647 (1997).

    Article 

    Google Scholar 

  • Busch, M. Worthwhile asteroid mining. JBIS 57, 301–305 (2004).

    Google Scholar 

  • Kryzanowski, T. & Mardon, A. Mining potential of asteriod belt. Can. Min. J. 111, (1990).

  • Levin, G. v, Kuznetz, L. & Lafleur, A. L. Approaches to resolving the query of life on Mars. in SPIE Proceedings (ed. Hoover, R. B.) (SPIE, 2000). https://doi.org/10.1117/12.411620.

  • Chakarvarty, U. Renewable Vitality Supplies Provide Implications. Affiliation for Vitality Economics, Vitality Discussion board 37 (2018).

  • Goonan, T. G. Uncommon earth parts: finish use and recyclability. https://doi.org/10.3133/sir20115094 (2011).

  • Rawlings, D. E. & Johnson, D. B. Biomining. Biomining (Springer-Verlag Berlin Heidelberg, 2007).

  • Volger, R. et al. Theoretical bioreactor design to carry out microbial mining actions on mars. Acta Astronaut. 170, 354–364 (2020).

    Article 
    CAS 

    Google Scholar 

  • Khalil, A. S. & Collins, J. J. Artificial biology: functions come of age. Nat. Rev. Genet. 11, 367–379 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tesei, D., Jewczynko, A., Lynch, A. & Urbaniak, C. Understanding the complexities and modifications of the astronaut microbiome for profitable long-duration house missions. Life 12, 495 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voorhies, A. A. et al. Examine of the influence of long-duration house missions on the Worldwide House Station on the astronaut microbiome. Sci. Rep. 9, 9911 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baevsky, R. M. et al. Autonomic cardiovascular and respiratory management throughout extended spaceflights aboard the Worldwide House Station. J. Appl Physiol. 103, 156–161 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Parsons-Wingerter, P., Hosamani, R., Vickerman, M. B. & Bhattacharya, S. Mapping by VESGEN of wing vein phenotype in Drosophila for quantifying diversifications to house environments. Gravit. House Res. 3, 54–64 (2015).

    Article 

    Google Scholar 

  • Voorhies, A. A. & Lorenzi, H. A. The problem of sustaining a wholesome microbiome throughout long-duration house missions. Entrance. Astron. House Sci. 3, (2016).

  • Crucian, B. & Sams, C. Immune system dysregulation throughout spaceflight: scientific danger for exploration-class missions. J. Leukoc. Biol. 86, 1017–1018 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turroni, S. et al. Intestine microbiome and house vacationers’ well being: state-of-the-art and doable professional/prebiotic methods for long-term house missions. Entrance. Physiol. 11, 553929 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. L. & Voorhies, A. A. Proof primarily based collection of probiotic strains to advertise astronaut well being or alleviate signs of sickness on lengthy length spaceflight missions. Benef. Microbes 8, 727–737 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Islam, S. U. Scientific makes use of of probiotics. Medication 95, e2658 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritchie, L. E. et al. House environmental issue impacts upon murine colon microbiota and mucosal homeostasis. PLoS ONE 10, e0125792 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smirnov, Okay. V. & Lizko, N. N. Issues of house gastroenterology and microenvironment. Meals / Nahr. 31, 563–566 (1987).

    Article 
    CAS 

    Google Scholar 

  • Shao, D. et al. Simulated microgravity impacts some organic traits of Lactobacillus acidophilus. Appl. Microbiol. Biotechnol. 101, 3439–3449 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Sakai, T. et al. Probiotics into outer house: feasibility assessments of encapsulated freeze-dried probiotics throughout 1 month’s storage on the Worldwide House Station. Sci. Rep. 8, 10687 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fajardo-Cavazos, P. & Nicholson, W. L. Shelf life and simulated gastrointestinal tract survival of chosen business probiotics throughout a simulated round-trip journey to Mars. Entrance. Microbiol. 12, 748950 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, Á., Smarandache, A., Iancu, V. & Pascu, M. L. Stability of antimicrobial drug molecules in numerous gravitational and radiation circumstances in view of functions throughout outer house missions. Molecules 26, 2221 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soga, S. et al. Stereospecific antitumor exercise of radicicol oxime derivatives. Most cancers Chemother. Pharm. 48, 435–445 (2001).

    Article 
    CAS 

    Google Scholar 

  • Lam, Okay. S. et al. The consequences of house flight on the manufacturing of monorden by Humicola fuscoatra WC5157 in solid-state fermentation. Appl. Microbiol. Biotechnol. 49, 579–583 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lam, Okay. S. et al. The impact of house flight on the manufacturing of actinomycin D by Streptomyces plicatus. J. Ind. Microbiol. Biotechnol. 29, 299–302 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benoit, M. R. et al. Microbial antibiotic manufacturing aboard the Worldwide House Station. Appl. Microbiol. Biotechnol. 70, 403–411 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schei, Okay. et al. Early intestine mycobiota and mother-offspring switch. Microbiome 5, 107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angulo, M., Reyes-Becerril, M., Medina-Córdova, N., Tovar-Ramirez, D. & Angulo, C. Probiotic and dietary results of Debaryomyces hansenii on animals. Appl. Microbiol. Biotechnol. 104, 7689–7699 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeng, A. et al. Results of Debaryomyces hansenii remedy on intestinal mucosa microecology in mice with antibiotic-associated diarrhea. PLoS ONE 14, e0224730 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y., Tang, Y., Xiao, N.-Q., Wang, C.-H. & Tan, Z.-J. Bacterial lactase gene traits in intestinal contents of antibiotic-associated diarrhea mice handled with Debaryomyces hansenii. Med. Sci. Monit. 26, e920879 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Y. et al. Affect of Debaryomyces hansenii on bacterial lactase gene range in intestinal mucosa of mice with antibiotic-associated diarrhea. PLoS ONE 14, e0225802 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a standard consider human illnesses. Biomed. Res. Int. 2017, 1–7 (2017).

    Article 

    Google Scholar 

  • Urbaniak, C. et al. The affect of spaceflight on the astronaut salivary microbiome and the seek for a microbiome biomarker for viral reactivation. Microbiome 8, 56 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Claesen, J. & Fischbach, M. A. Artificial microbes as drug supply methods. ACS Synth. Biol. 4, 358–364 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aggarwal, N., Breedon, A. M. E., Davis, C. M., Hwang, I. Y. & Chang, M. W. Engineering probiotics for therapeutic functions: current examples and translational outlook. Curr. Opin. Biotechnol. 65, 171–179 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. Engineering probiotics as dwelling diagnostics and therapeutics for bettering human well being. Micro. Cell Reality. 19, 56 (2020).

    Article 

    Google Scholar 

  • Piñero-Lambea, C., Ruano-Gallego, D. & Fernández, L. Á. Engineered micro organism as therapeutic brokers. Curr. Opin. Biotechnol. 35, 94–102 (2015).

    Article 
    PubMed 

    Google Scholar 

  • O’Toole, P. W., Marchesi, J. R. & Hill, C. Subsequent-generation probiotics: the spectrum from probiotics to reside biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Garrido, V. et al. Engineering a genome-reduced bacterium to get rid of Staphylococcus aureus biofilms in vivo. Mol. Syst. Biol. 17, e10145 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neil, Okay. et al. Excessive-efficiency supply of CRISPR-Cas9 by engineered probiotics allows exact microbiome enhancing. Mol. Syst. Biol. 17, e10335 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strucko, T., Andersen, N. L., Mahler, M. R., Martinez, J. L. & Mortensen, U. H. A CRISPR/Cas9 technique facilitates environment friendly oligo-mediated gene enhancing in Debaryomyces hansenii. Synth. Biol. 6, ysab031 (2021).

    Article 

    Google Scholar 

  • Banjara, N., Nickerson, Okay. W., Suhr, M. J. & Hallen-Adams, H. E. Killer toxin from a number of food-derived Debaryomyces hansenii strains efficient in opposition to pathogenic Candida yeasts. Int. J. Meals Microbiol. 222, 23–29 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Qaysi, S. A. S., Al-Haideri, H., Thabit, Z. A., Al-Kubaisy, W. H. A. A.-R. & Ibrahim, J. A. A.-R. Manufacturing, characterization, and antimicrobial exercise of mycocin produced by Debaryomyces hanseni DSMZ70238. Int. J. Microbiol. 2017, 1–9 (2017).

    Article 

    Google Scholar 

  • Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3, 228–237 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Saeidi, N. et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa a human pathogen. Mol. Syst. Biol. 7, 521 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, I. Y. et al. Engineered probiotic Escherichia coli can get rid of and stop Pseudomonas aeruginosa intestine an infection in animal fashions. Nat. Commun. 8, 15028 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geldart, Okay. G. et al. Engineered scp E. coli scp Nissle 1917 for the discount of vancomycin-resistant Enterococcus within the intestinal tract. Bioeng. Amp Transl. Med. 3, 197–208 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tscherner, M., Giessen, T. W., Markey, L., Kumamoto, C. A. & Silver, P. A. An artificial system that senses Candida albicans and inhibits virulence components https://doi.org/10.1101/342287 (2018).

  • Plavec, T. V. et al. Engineered Lactococcus lactis secreting IL-23 receptor-targeted REX protein blockers for modulation of IL-23/Th17-mediated irritation. Microorganisms 7, 152 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubkowicz, D. et al. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synth. Biol. 7, 1229–1237 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McFarland, L. V., Evans, C. T. & Goldstein, E. J. C. Pressure-specificity and disease-specificity of probiotic efficacy: a scientific overview and meta-analysis. Entrance Med (Lausanne) 5, 124 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the remedy of inflammatory bowel illness. Nat. Med. 27, 1212–1222 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Archer, E. J., Robinson, A. B. & Süel, G. M. Engineered E. coli that detect and reply to intestine irritation by nitric oxide sensing. ACS Synth. Biol. 1, 451–457 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Daeffler, Okay. N.-M. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting intestine irritation. Mol. Syst. Biol. 13, 923 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotula, J. W. et al. Programmable micro organism detect and file an environmental sign within the mammalian intestine. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Çiftçioǧlu, N., Haddad, R. S., Golden, D. C., Morrison, D. R. & McKay, D. S. A possible trigger for kidney stone formation throughout house flights: enhanced development of nanobacteria in microgravity. Kidney Int. 67, 483–491 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Whitson, P., Pietrzyk, R., Jones, J. & Sams, C. Renal stone evaluation throughout spaceflight – Evaluation and countermeausure validation. in 2001 Convention and Exhibit on Worldwide House Station Utilization (American Institute of Aeronautics and Astronautics, 2001).

  • Pietrzyk, R., Jones, J., Sams, C. & Whitson, P. Renal stone formation amongst astronauts – PubMed. Aviat. House Environ. Med. 78, (2007).

  • Siener, R. et al. The function of Oxalobacter formigenes colonization in calcium oxalate stone illness. Kidney Int. 83, 1144–1149 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al, Okay. F. et al. Oxalate-degrading Bacillus subtilis mitigates urolithiasis in a Drosophila melanogaster mannequin. mSphere 5, e00498–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grujic, D. et al. Hyperoxaluria is decreased and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am. J. Nephrol. 29, 86–93 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Sasikumar, P. et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J. Biomed. Sci. 21, 86 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ettinger, G., MacDonald, Okay., Reid, G. & Burton, J. P. The affect of the human microbiome and probiotics on cardiovascular well being. Intestine Microbes 5, 719–728 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gan, X. T. et al. Probiotic administration attenuates myocardial hypertrophy and coronary heart failure after myocardial infarction within the rat. Circ. Coronary heart Fail 7, 491–499 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Naruszewicz, M., Johansson, M.-L., Zapolska-Downar, D. & Bukowska, H. Impact of Lactobacillus plantarum 299v on heart problems danger components in people who smoke. Am. J. Clin. Nutr. 76, 1249–1255 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. Incorporation of therapeutically modified micro organism into intestine microbiota inhibits weight problems. J. Clin. Make investments. 124, 3391–3406 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughson, R. L., Helm, A. & Durante, M. Coronary heart in house: impact of the extraterrestrial setting on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Meerman, M. et al. Myocardial illness and long-distance house journey: fixing the radiation downside. Entrance. Cardiovasc. Med. 8, 631985 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trolio, R., di, Lorenzo, G., di, Fumo, B. & Ascierto, P. A. Cosmic radiation and most cancers: is there a hyperlink? Future Oncol. 11, 1123–1135 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Durante, M. & Cucinotta, F. A. Heavy ion carcinogenesis and human house exploration. Nat. Rev. Most cancers 8, 465–472 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edmondson, E. F. et al. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion and -rayinduced tumors. Sci. Adv. 6, eaax5940 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, S., Gravekamp, C., Bermudes, D. & Liu, Okay. Tumour-targeting micro organism engineered to battle most cancers. Nat. Rev. Most cancers 18, 727–743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, H. et al. Antitumor impact of sFlt-1 gene remedy system mediated by Bifidobacterium Infantis on Lewis lung most cancers in mice. Most cancers Gene Ther. 18, 884–896 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piñero-Lambea, C. et al. Programming managed adhesion of E. coli to focus on surfaces, cells, and tumors with artificial adhesins. ACS Synth. Biol. 4, 463–473 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chowdhury, S. et al. Programmable micro organism induce sturdy tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. Genetically engineered bacterial protein nanoparticles for focused most cancers remedy. Int. J. Nanomed. 16, 105–117 (2021).

    Article 

    Google Scholar 

  • Agrawal, N. et al. Bacteriolytic remedy can generate a potent immune response in opposition to experimental tumors. Proc. Natl Acad. Sci. USA 101, 15172–15177 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, X. et al. Novel insights into the function of Clostridium novyi-NT associated mixture bacteriolytic remedy in stable tumors (Evaluate). Oncol. Lett. 21, 110 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badie, F. et al. Use of Salmonella micro organism in most cancers remedy: direct, drug supply and mixture approaches. Entrance. Oncol. 11, 624759 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y., Chen, J., Tang, B. O., Zhang, X. & Hua, Z.-C. Systemic administration of attenuated Salmonella typhimurium together with interleukin-21 for most cancers remedy. Mol. Clin. Oncol. 1, 461–465 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon, W., Yoo, Y., Chae, Y. S., Kee, S.-H. & Kim, B. M. Therapeutic benefit of genetically engineered Salmonella typhimurium carrying brief hairpin RNA in opposition to inhibin alpha subunit in most cancers remedy. Ann. Oncol. 29, 2010–2017 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toso, J. F. et al. Part I research of the intravenous administration of attenuated Salmonella typhimurium to sufferers with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory most cancers sufferers. Most cancers Gene Ther. 10, 737–744 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maletzki, C., Linnebacher, M., Kreikemeyer, B. & Emmrich, J. Pancreatic most cancers regression by intratumoural injection of reside Streptococcus pyogenes in a syngeneic mouse mannequin. Intestine 57, 483–491 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Danino, T. et al. Programmable probiotics for detection of most cancers in urine. Sci. Transl. Med. 7, 289ra84 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. & Gardner, R. D. Microalgae, soil and crops: a important overview of microalgae as renewable sources for agriculture. Algal Res. 54, 102200 (2021).

    Article 

    Google Scholar 

  • Torres-Tiji, Y., Fields, F. J. & Mayfield, S. P. Microalgae as a future meals supply. Biotechnol. Adv. 41, 107536 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olsson-Francis, Okay. & Cockell, C. S. Use of cyanobacteria for in-situ useful resource use in house functions. Planet House Sci. 58, 1279–1285 (2010).

    Article 
    CAS 

    Google Scholar 

  • Brown, M. Curious Youngsters: The place does the oxygen come from within the Worldwide House Station, and why don’t they run out of air? The Dialog https://theconversation.com/curious-kids-where-does-the-oxygen-come-from-in-the-international-space-station-and-why-dont-they-run-out-of-air-82910 (2017).

  • Berepiki, A., Hitchcock, A., Moore, C. M. & Bibby, T. S. Tapping the unused potential of photosynthesis with a heterologous electron sink. ACS Synth. Biol. 5, 1369–1375 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santos-Merino, M. et al. Improved photosynthetic capability and photosystem I oxidation through heterologous metabolism engineering in cyanobacteria. Proc. Natl Acad. Sci. USA 118, e2021523118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamennaya, N. A. et al. Putting in further bicarbonate transporters within the cyanobacterium Synechocystis sp. PCC6803 enhances biomass manufacturing. Metab. Eng. 29, 76–85 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakai, M., Ogawa, T., Matsuoka, M. & Fukuda, H. Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J. Ferment. Bioeng. 84, 434–443 (1997).

    Article 
    CAS 

    Google Scholar 

  • Lindberg, P., Park, S. & Melis, A. Engineering a platform for photosynthetic isoprene manufacturing in cyanobacteria, utilizing Synechocystis because the mannequin organism. Metab. Eng. 12, 70–79 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177–1180 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, M.-D. & Coleman, J. R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dogutan, D. Okay. & Nocera, D. G. Synthetic photosynthesis at efficiencies drastically exceeding that of pure photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wells, M. L. et al. Algae as dietary and useful meals sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, E. W. Micro-algae as a supply of protein. Biotechnol. Adv. 25, 207–210 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kroth, P. G. et al. Genome enhancing in diatoms: achievements and targets. Plant Cell Rep. 37, 1401–1408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slattery, S. S. et al. Plasmid-based complementation of huge deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 enhancing. Sci. Rep. 10, 13879 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karas, B. J. et al. Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 6, 6925 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gale, G. A. R. et al. Rising species and genome enhancing instruments: future prospects in Cyanobacterial Artificial Biology. Microorganisms 7, 409 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serif, M. et al. One-step era of a number of gene knock-outs within the diatom Phaeodactylum tricornutum by DNA-free genome enhancing. Nat. Commun. 9, 3924 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Behler, J., Vijay, D., Hess, W. R. & Akhtar, M. Okay. CRISPR-based applied sciences for metabolic engineering in cyanobacteria. Traits Biotechnol. 36, 996–1010 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cochrane, R. R. et al. Speedy technique for producing designer algal mitochondrial genomes. Algal Res. 50, 102014 (2020).

    Article 

    Google Scholar 

  • Slattery, S. S. et al. An expanded plasmid-based genetic toolbox allows Cas9 genome enhancing and secure upkeep of artificial pathways in Phaeodactylum tricornutum. ACS Synth. Biol. 7, 328–338 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koo, Okay. M. et al. The mechanism of starch over-accumulation in Chlamydomonas reinhardtii high-starch mutants recognized by comparative transcriptome evaluation. Entrance. Microbiol. 8, 858 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baek, Okay. et al. Photoautotrophic manufacturing of macular pigment in a Chlamydomonas reinhardtii pressure generated through the use of DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol. Bioeng. 115, 719–728 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lee, A. G. et al. Spaceflight related neuro-ocular syndrome (SANS) and the neuro-ophthalmologic results of microgravity: a overview and an replace. npj Microgravity 6, 1–10 (2020).

    Google Scholar 

  • Hindupur, A. et al. BioNutrients-1: On-Demand Manufacturing of Vitamins in House. NASA authorities report. https://ntrs.nasa.gov/citations/20190033398 (2019).

  • Durante, M. & Cucinotta, F. A. Bodily foundation of radiation safety in house journey. Rev. Mod. Phys. 83, 1245–1281 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ball, N. et al. BioNutrients-2: Enhancements to the BioNutrients-1 Nutrient Manufacturing System. fiftieth Worldwide Convention on Environmental Programs, (2021).

  • Snyder, J. E., Walsh, D., Carr, P. A. & Rothschild, L. J. A makerspace for all times help methods in house. Traits Biotechnol. 37, 1164–1174 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • KISTLER, S. S. Coherent expanded aerogels and jellies. Nature 127, 741 (1931).

    Article 
    CAS 

    Google Scholar 

  • Paulauskiene, T., Uebe, J. & Ziogas, M. Cellulose aerogel composites as oil sorbents and their regeneration. PeerJ 9, e11795 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soleimani Dorcheh, A. & Abbasi, M. H. Silica aerogel; synthesis, properties and characterization. J. Mater. Course of. Tech. 1–3, 10–26 (2008).

    Article 

    Google Scholar 

  • Wordsworth, R., Kerber, L. & Cockell, C. Enabling Martian habitability with silica aerogel through the solid-state greenhouse impact. Nat. Astron 3, 898–903 (2019).

    Article 

    Google Scholar 

  • Zhao, S. et al. Additive manufacturing of silica aerogels. Nature 584, 387–392 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, S. M. & Sakamoto, J. Purposes of Aerogels in House Exploration. in Aerogels Handbook 721–746 (Springer New York, 2011). https://doi.org/10.1007/978-1-4419-7589-8_32.

  • Yang, Y. et al. Toughness of spider silk at excessive and low temperatures. Adv. Mater. 17, 84–88 (2005).

    Article 

    Google Scholar 

  • Bowen, C. H. et al. Seeded chain-growth polymerization of proteins in dwelling bacterial cells. ACS Synth. Biol. 8, 2651–2658 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Voigt, C. A. Artificial biology 20202030: six commercially-available merchandise which might be altering our world. Nat. Commun. 11, 6379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, A. D. et al. Artificial biology for fibers, adhesives, and energetic camouflage supplies in safety and aerospace. MRS Commun. 9, 486–504 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, E. et al. A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on various surfaces. ACS Appl Mater. Interfaces 13, 48457–48468 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubbin, Okay. et al. Projection microstereolithographic microbial bioprinting for engineered biofilms. Nano Lett. 21, 1352–1359 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Martino, P. Extracellular polymeric substances, a key ingredient in understanding biofilm phenotype. AIMS Microbiol. 4, 274–288 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akiyama, H. et al. Antibiotics-free secure polyhydroxyalkanoate (PHA) manufacturing from carbon dioxide by recombinant cyanobacteria. Bioresour. Technol. 102, 11039–11042 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Osanai, T. et al. Elevated bioplastic manufacturing with an RNA polymerase sigma issue SigE throughout nitrogen hunger in Synechocystis sp. PCC 6803. DNA Res. 20, 525–535 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sudesh, Okay., Taguchi, Okay. & Doi, Y. Impact of elevated PHA synthase exercise on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J. Biol. Macromol. 30, 97–104 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Averesch, N. J. H. & Rothschild, L. J. Metabolic engineering of Bacillus subtilis for manufacturing of para-aminobenzoic acid surprising significance of carbon supply is a bonus for house utility. Micro. Biotechnol. 12, 703–714 (2019).

    Article 
    CAS 

    Google Scholar 

  • Averesch, N. J. H., Winter, G. & Krömer, J. O. Manufacturing of para-aminobenzoic acid from totally different carbon-sources in engineered Saccharomyces cerevisiae. Micro. Cell Reality. 15, 89 (2016).

    Article 

    Google Scholar 

  • Prater, T. et al. 3D Printing in Zero G Know-how Demonstration Mission: full experimental outcomes and abstract of associated materials modeling efforts. Int. J. Adv. Manuf. Technol. 101, 391–417 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, J.-D. Microbiological deterioration and degradation of artificial polymeric supplies: current analysis advances. Int. Biodeterior. Amp. Biodegrad. 52, 69–91 (2003).

    Article 
    CAS 

    Google Scholar 

  • Tesei, D. Black fungi analysis: out-of-this-world implications. Encyclopedia 2, 212–229 (2022).

    Article 

    Google Scholar 

  • Webb, J. S. et al. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl. Environ. Microbiol. 66, 3194–3200 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tesei, D. et al. Shotgun proteomics reveals putative polyesterases within the secretome of the rock-inhabiting fungus Knufia chersonesos. Sci. Rep. 10, 9770 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tesei, D. et al. Results of simulated microgravity on the proteome and secretome of the polyextremotolerant black fungus Knufia chersonesos. Entrance. Genet. 12, 638708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dadachova, E. & Casadevall, A. Ionizing radiation: how fungi cope, adapt, and exploit with the assistance of melanin. Curr. Opin. Microbiol. 11, 525–531 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blachowicz, A. et al. Proteomic and metabolomic traits of extremophilic fungi underneath simulated mars circumstances. Entrance. Microbiol. 10, 1013 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zakharova, Okay., Marzban, G., de Vera, J.-P., Lorek, A. & Sterflinger, Okay. Protein patterns of black fungi underneath simulated Mars-like circumstances. Sci. Rep. 4, 5114 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atanasova, N., Stoitsova, S., Paunova-Krasteva, T. & Kambourova, M. Plastic degradation by extremophilic micro organism. Int. J. Mol. Sci. 22, 5610 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reisz, J. A., Bansal, N., Qian, J., Zhao, W. & Furdui, C. M. Results of ionizing radiation on organic molecules mechanisms of injury and rising strategies of detection. Antioxid. Amp. Redox Sign. 21, 260–292 (2014).

    Article 
    CAS 

    Google Scholar 

  • Azzam, E. I., Jay-Gerin, J.-P. & Ache, D. Ionizing radiation-induced metabolic oxidative stress and extended cell damage. Most cancers Lett. 327, 48–60 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cucinotta, F. A., Kim, M.-H. Y., Willingham, V. & George, Okay. A. Bodily and organic organ dosimetry evaluation for worldwide house station astronauts. Radiat. Res. 170, 127–138 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • American Nuclear Society — ANS. https://www.ans.org/.

  • Naito, M. et al. Radiation dose and its safety within the Moon from galactic cosmic rays and photo voltaic energetic particles: on the lunar floor and in a lava tube. J. Radiol. Prot. 40, 947–961 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mendell, W. Lunar Bases and House Actions of the twenty first Century. (1985).

  • Aziz, Md. A. B., Rahman, Md. F. & Prodhan, Md. M. H. Comparability of lead, copper and aluminium as gamma radiation shielding materials by experimental measurements and simulation utilizing MCNP model 4c. Int. J. Contemp. Res. Rev. 9, 20193–20206 (2018).

    Article 

    Google Scholar 

  • Zhdanova, N. N., Tugay, T., Dighton, J., Zheltonozhsky, V. & Mcdermott, P. Ionizing radiation attracts soil fungi. Mycol. Res. 108, 1089–1096 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Vember, V. V. & Zhdanova, N. N. Peculiarities of linear development of the melanin-containing fungi Cladosporium sphaerospermum Penz. and Alternaria alternata (Fr.) Keissler. Mikrobiol. Z. 63, 3–12 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Dadachova, E. et al. Ionizing radiation modifications the digital properties of melanin and enhances the expansion of melanized fungi. PLoS ONE 2, e457 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dadachova, E. et al. The radioprotective properties of fungal melanin are a operate of its chemical composition, secure radical presence and spatial association. Pigment Cell Melanoma Res. 21, 192–199 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cordero, R. J. B. Melanin for house journey radioprotection. Environ. Microbiol. 19, 2529–2532 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Robinson, C. H. Chilly adaptation in Arctic and Antarctic fungi. New Phytol. 151, 341–353 (2001).

    Article 
    CAS 

    Google Scholar 

  • Dadachova, E. et al. The radioprotective properties of fungal melanin are a operate of its chemical composition, secure radical presence and spatial association. Pigment Cell Amp. Melanoma Res. 21, 192–199 (2007).

    Article 

    Google Scholar 

  • Eisenman, H. C. et al. Microstructure of cell wall-associated melanin within the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44, 3683–3693 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schultzhaus, Z. et al. The response of the melanized yeast Exophiala dermatitidis to gamma radiation publicity. Environ. Microbiol. 22, 1310–1326 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, H. J., Mohamad-Fauzi, N., Rizman-Idid, M., Convey, P. & Alias, S. A. Protecting mechanisms and responses of micro-fungi in the direction of ultraviolet-induced mobile injury. Polar Sci. 20, 19–34 (2019).

    Article 

    Google Scholar 

  • Romsdahl, J., Blachowicz, A., Chiang, Y.-M., Venkateswaran, Okay. & Wang, C. C. C. Metabolomic evaluation of Aspergillus niger remoted from the Worldwide House Station reveals enhanced manufacturing ranges of the antioxidant Pyranonigrin A. Entrance. Microbiol. 11, 931 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malo, M. E. et al. Transcriptomic and genomic modifications related to radioadaptation in Exophiala dermatitidis. Comput. Struct. Biotechnol. J. 19, 196–205 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cortesão, M. et al. MARSBOx: fungal and bacterial endurance from a balloon-flown analog mission within the stratosphere. Entrance. Microbiol. 12, 601713 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhdanova, N. et al. Tropism of soil micromycetes underneath the affect of ionizing radiation. Mikologiya I Fitopatologiya 28, (1994).

  • Averesch, N. J. H., Shunk, G. Okay. & Kern, C. Cultivation of the Dematiaceous Fungus Cladosporium sphaerospermum Aboard the Worldwide House Station and Results of Ionizing Radiation. Entrance. Microbiol. 13, 877625 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almpani-Lekka, D., Pfeiffer, S., Schmidts, C. & Web optimization, S. A overview on structure with fungal biomaterials: the specified and the possible. Fungal Biol. Biotechnol. 8, 17 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cerimi, Okay., Akkaya, Okay. C., Pohl, C., Schmidt, B. & Neubauer, P. Fungi as supply for brand spanking new bio-based supplies: a patent overview. Fungal Biol. Biotechnol. 6, 17 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L., Park, D. & Qin, Z. Materials operate of mycelium-based bio-composite: a overview. Entrance. Mater. 8, 374 (2021).

    Article 

    Google Scholar 

  • Haneef, M. et al. Superior supplies from fungal mycelium: fabrication and tuning of bodily properties. Sci. Rep. 7, 41292 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G. & Bajwa, D. S. Analysis of physico-mechanical properties of mycelium strengthened inexperienced biocomposites comprised of cellulosic fibers. Appl. Eng. Agric. 32, 931–938 (2016).

    Article 

    Google Scholar 

  • Solar, W., Tajvidi, M., Hunt, C. G., McIntyre, G. & Gardner, D. J. Totally bio-based hybrid composites fabricated from wooden, fungal mycelium and cellulose nanofibrils. Sci. Rep. 9, 3766 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. et al. Identification of the pigment and its function in UV resistance in Paecilomyces variotii, a Chernobyl isolate, utilizing genetic manipulation methods. Fungal Genet. Biol. 152, 103567 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts, A. D. et al. Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Mater. In the present day Bio 12, 100136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. & Chaudhuri, T. Okay. Revisiting Escherichia coli as microbial manufacturing facility for enhanced manufacturing of human serum albumin. Micro. Cell Reality. 16, 173 (2017).

    Article 

    Google Scholar 

  • Roberts, A. D. et al. Non-covalent protein-based adhesives for clear substrates bovine serum albumin vs. recombinant spider silk. Mater. In the present day Bio 7, 100068 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mujah, D., Shahin, M. A. & Cheng, L. State-of-the-art overview of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 34, 524–537 (2016).

    Article 

    Google Scholar 

  • Bang, S. S., Galinat, J. Okay. & Ramakrishnan, V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzym. Micro. Technol. 28, 404–409 (2001).

    Article 
    CAS 

    Google Scholar 

  • Shares-Fischer, S., Galinat, J. Okay. & Bang, S. S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999).

    Article 
    CAS 

    Google Scholar 

  • Rahbar, N. Extending the lifetime of self-healing structural. Mater. Matter 2, 289–291 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhu, T., Paulo, C., Merroun, M. L. & Dittrich, M. Potential utility of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol. Eng. 82, 459–468 (2015).

    Article 

    Google Scholar 

  • M, Okay. S. et al. Analysis of crack therapeutic potential of cement mortar integrated with blue-green microalgae. J. Construct. Eng. 44, 102958 (2021).

    Article 

    Google Scholar 

  • Seifan, M., Samani, A. Okay. & Berenjian, A. Induced calcium carbonate precipitation utilizing Bacillus species. Appl. Microbiol. Biotechnol. 100, 9895–9906 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mondal, S., Das, P. & Datta, P. Deinococcus radiodurans: a novel bacterium for crack remediation of concrete with particular applicability to low-temperature circumstances. Cem. Concr. Compos 108, 103523 (2020). & Ghosh, A. (Dey).

    Article 
    CAS 

    Google Scholar 

  • Ramachandran, S. Okay., Ramakrishnan, V. & Bang, S. S. Remediation of Concrete Utilizing Microorganisms. ACI Mater. J. 98, 3–9 (2001).

    CAS 

    Google Scholar 

  • Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Utility of micro organism as self-healing agent for the event of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).

    Article 

    Google Scholar 

  • Barabesi, C. et al. Bacillus subtilis gene cluster concerned in calcium carbonate biomineralization. J. Bacteriol. 189, 228–235 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heveran, C. M. et al. Biomineralization and successive regeneration of engineered dwelling constructing supplies. Matter 2, 481–494 (2020).

    Article 
    CAS 

    Google Scholar 

  • Qiu, J. et al. Engineering dwelling constructing supplies for enhanced bacterial viability and mechanical properties. iScience 24, 102083 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Genomic and transcriptomic evaluation of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability. Sci. Rep. 4, 6216 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crabbé, A. et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight circumstances contain Hfq regulation and reveal a task for oxygen. Appl. Environ. Microbiol. 77, 1221–1230 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nickerson, C. A. et al. Microgravity as a novel environmental sign affecting Salmonella enterica serovar typhimurium virulence. Infect. Immun. 68, 3147–3152 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, J. W. et al. House flight alters bacterial gene expression and virulence and divulges a task for international regulator Hfq. Proc. Natl Acad. Sci. USA 104, 16299–16304 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, R. et al. Spaceflight and simulated microgravity circumstances improve virulence of Serratia marcescens within the Drosophila melanogaster an infection mannequin. NPJ Microgravity 6, 4 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chopra, V. et al. Alterations within the virulence potential of enteric pathogens and bacterial host cell interactions underneath simulated microgravity circumstances. J. Toxicol. Environ. Well being A 69, 1345–1370 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knox, B. P. et al. Characterization of Aspergillus fumigatus isolates from air and surfaces of the worldwide house station. mSphere 1, (2016).

  • Crabbé, A. et al. Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS ONE 8, e80677 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, J. W. et al. Microarray evaluation identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl Acad. Sci. USA 99, 13807–13812 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crabbé, A. et al. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity includes AlgU regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2010.02184.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A. & Ott, C. M. Induction of attachment-independent biofilm formation and repression of hfq expression by low-fluid-shear tradition of Staphylococcus aureus. Appl. Environ. Microbiol. 77, 6368–6378 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawal, A., Jejelowo, O. A. & Rosenzweig, J. A. The consequences of low-shear mechanical stress on yersinia pestis virulence. Astrobiology 10, 881–888 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Rosado, H., Doyle, M., Hinds, J. & Taylor, P. W. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut. 66, 408–413 (2010).

    Article 
    CAS 

    Google Scholar 

  • Timmery, S., Hu, X. & Mahillon, J. Characterization of bacilli remoted from the confined environments of the Antarctic Concordia Station and the Worldwide House Station. Astrobiology 11, 323–334 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Rourke, A., Lee, M. D., Nierman, W. C., Everroad, R. C. & Dupont, C. L. Genomic and phenotypic characterization of Burkholderia isolates from the potable water system of the Worldwide House Station. PLoS ONE 15, e0227152 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammond, T. G. et al. Results of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. Astrobiology 13, 1081–1090 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mora, M. et al. House Station circumstances are selective however don’t alter microbial traits related to human well being. Nat. Commun. 10, (2019).

  • Blaustein, R. A. et al. Pangenomic method to understanding microbial diversifications inside a mannequin constructed setting, the Worldwide House Station, relative to human hosts and soil. mSystems 4, e00281–18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reffuveille, F., Josse, J., Vallé, Q., Mongaret, C. & Gangloff, S. C. Staphylococcus aureus Biofilms and their Affect on the Medical Area. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus (InTech, 2017).

  • Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial protecting clothes in excessive environments. Int. J. Mol. Sci. 20, 3423 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S. & Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Brokers 35, 322–332 (2010).

    Article 
    PubMed 

    Google Scholar 

  • McLean, R. J. C., Cassanto, J. M., Barnes, M. B. & Koo, J. H. Bacterial biofilm formation underneath microgravity circumstances. FEMS Microbiol. Lett. 195, 115–119 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, W. et al. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS ONE 8, e62437 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pyle, B. et al. Bacterial Progress on surfaces and in suspensions. in Biorack on Spacehab vol. 148 (Organic Experiments on Shuttle to Mir Missions 03, 05, and 06, European House Company, 1999).

  • Acres, J. M., Youngapelian, M. J. & Nadeau, J. The affect of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity 7, 7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beech, I. B. & Sunner, J. Biocorrosion: in the direction of understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15, 181–186 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sielaff, A. C. et al. Characterization of the entire and viable bacterial and fungal communities related to the Worldwide House Station surfaces. Microbiome 7, 50 (2019).

    Article 

    Google Scholar 

  • Dai, X. et al. Corrosion of aluminum alloy 2024 brought on by Aspergillus niger. Int. Biodeterior. Amp. Biodegrad. 115, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rajasekar, A. & Ting, Y.-P. Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading micro organism Bacillus cereus ACE4 and Serratia marcescens ACE2. Ind. Amp. Eng. Chem. Res. 49, 6054–6061 (2010).

    Article 
    CAS 

    Google Scholar 

  • Pavissich, J. P., Vargas, I. T., González, B., Pastén, P. A. & Pizarro, G. E. Tradition dependent and impartial analyses of bacterial communities concerned in copper plumbing corrosion. J. Appl. Microbiol. 109, 771–782 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, S., Lin, J. & Lin, Y. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system – PubMed. J. Microbiol. Immunol. Infect. 31, 151–164 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Klintworth, R., Reher, H. J., Viktorov, A. N. & Bohle, D. Organic induced corrosion of supplies II: New take a look at strategies and experiences from mir station. Acta Astronaut. 44, 569–578 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novikova, N. et al. Survey of environmental biocontamination on board the Worldwide House Station. Res. Microbiol. 157, 5–12 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Novikova, N. D. Evaluate of the data of microbial contamination of the Russian Manned Spacecraft. Micro. Ecol. 47, 127–132 (2004).

    Article 
    CAS 

    Google Scholar 

  • Bacci, G. et al. Microbial neighborhood composition of water samples saved contained in the Worldwide House Station. Res. Microbiol. 170, 230–234 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Landry, Okay. S., Morey, J. M., Bharat, B., Haney, N. M. & Panesar, S. S. Biofilms impacts on human well being and its relevance to house journey. Microorganisms 8, 998 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zea, L. et al. Design of a spaceflight biofilm experiment. Acta Astronaut. 148, 294–300 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J. et al. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. npj Biofilms Microbiomes 7, 1–12 (2021).

    Article 

    Google Scholar 

  • Carter, D., Wilson, L. & Orozco, N. Standing of ISS Water Administration and Restoration. in forty first Worldwide Convention on Environmental Programs (American Institute of Aeronautics and Astronautics, 2011).

  • Zea, L. et al. Potential biofilm management methods for prolonged spaceflight missions. Biofilm 2, 100026 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tirumalai, M. R. et al. The variation of Escherichia coli cells grown in simulated microgravity for an prolonged interval is each phenotypic and genomic. NPJ Microgravity 3, 15 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panitz, C., Frösler, J., Wingender, J., Flemming, H.-C. & Rettberg, P. Tolerances of Deinococcus geothermalis biofilms and planktonic cells uncovered to house and simulated martian circumstances in low earth orbit for nearly two years. Astrobiology 19, 979–994 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flemming, H.-C. et al. Biofilms: an emergent type of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mauclaire, L. & Egli, M. Impact of simulated microgravity on development and manufacturing of exopolymeric substances of Micrococcus luteus house and earth isolates. FEMS Immunol. Amp. Med. Microbiol. 59, 350–356 (2010).

    Article 
    CAS 

    Google Scholar 

  • Guo, Y. et al. Results of house setting on genome, transcriptome, and proteome of Klebsiella pneumoniae. Arch. Med. Res. 46, 609–618 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muhammad, M. H. et al. Past danger: bacterial biofilms and their regulating approaches. Entrance. Microbiol. 11, 928 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ichikawa, Okay., Nakamura, H. Okay., Ogawa, N., Sakimura, T. & Kuroda, M. R&D of long-term life help system through the use of electrochemically activated biofilm reactor of aquatic animals for house examinations. Biol. Sci. House 13, 348–350 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • BfS – Organic dosimetry following radiation publicity – Organic dosimetry following radiation publicity. https://www.bfs.de/EN/matters/ion/service/dosimetry/biological-dosimetry/biological-dosimetry.html.

  • Bérces, A. et al. Organic UV dosimeters within the evaluation of the organic hazard from environmental radiation. J. Photochem. Photobio. B 53, 36–43 (1999).

    Article 

    Google Scholar 

  • Rettberg, P., Horneck, G., Zittermann, A. & Heer, M. Organic dosimetry to find out the UV radiation local weather contained in the MIR station and its function in vitamin D biosynthesis. Adv. House Res. 22, 1643–1652 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene switch: constructing the online of life. Nat. Rev. Genet. 16, 472–482 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emamalipour, M. et al. Horizontal gene switch: from evolutionary flexibility to illness development. Entrance. Cell Dev. Biol. 8, 229 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Cell genetic parts: the brokers of open supply evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grüll, M. P., Mulligan, M. E. & Lang, A. S. Small extracellular particles with large potential for horizontal gene switch: membrane vesicles and gene switch brokers. FEMS Microbiol. Lett. 365, (2018).

  • Brooks, A. N., Turkarslan, S., Beer, Okay. D., Lo, F. Y. & Baliga, N. S. Adaptation of cells to new environments. WIREs Syst. Biol. Med. 3, 544–561 (2010).

    Article 

    Google Scholar 

  • Roberts, A. P. & Kreth, J. The influence of horizontal gene switch on the adaptive capacity of the human oral microbiome. Entrance. Cell Infect. Microbiol. 4, 124 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koonin, E. V., Makarova, Okay. S. & Aravind, L. Horizontal gene switch in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaguchi, N. et al. Microbial monitoring of crewed habitats in house present standing and future views. Microbes Environ. 29, 250–260 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciferri, O., Tiboni, O., Pasquale, G., di, Orlandoni, A. M. & Marchesi, M. L. Results of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften 73, 418–421 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Juergensmeyer, M., Juergensmeyer, E. & Guikema, J. Plasmid acquisition in microgravity. J. Gravit. Physiol. 2, P161–2 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Boever, Pde et al. Conjugation-mediated plasmid change between micro organism grown underneath house flight circumstances. Microgravity Sci. Technol. 19, 138–144 (2007).

    Article 

    Google Scholar 

  • Kohler, V., Keller, W. & Grohmann, E. Regulation of Gram-positive conjugation. Entrance. Microbiol. 10, 1134 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beuls, E. et al. Bacillus thuringiensis conjugation in simulated microgravity. Astrobiology 9, 797–805 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urbaniak, C., Grams, T., Mason, C. E. & Venkateswaran, Okay. Simulated microgravity promotes horizontal gene switch of antimicrobial resistance genes between bacterial genera within the absence of antibiotic selective stress. Life 11, 960 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeong, H., Arif, B., Caetano-Anollés, G., Kim, Okay. M. & Nasir, A. Horizontal gene switch in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci. Rep. 9, 5953 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Najar-Peerayeh, S., Moghadas, A. J. & Behmanesh, M. Antibiotic susceptibility and mecA frequency in Staphylococcus epidermidis, remoted from intensive care unit sufferers. Jundishapur J. Microbiol. 7, e11188 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bloemendaal, A. L. A., Brouwer, E. C. & Fluit, A. C. Methicillin resistance switch from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a affected person throughout antibiotic remedy. PLoS ONE 5, e11841 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Massella, E. et al. Antimicrobial resistance profile and ExPEC virulence potential in commensal Escherichia coli of a number of sources. Antibiotics 10, 351 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Floreani, A., Leung, P. S. C. & Gershwin, M. E. Environmental foundation of autoimmunity. Clin. Rev. Allergy Amp. Immunol. 50, 287–300 (2015).

    Article 

    Google Scholar 

  • Molina, V. & Shoenfeld, Y. An infection, vaccines and different environmental triggers of autoimmunity. Autoimmunity 38, 235–245 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andersson, D. I. & Hughes, D. Antibiotic resistance and its value: is it doable to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heuer, H., Schmitt, H. & Smalla, Okay. Antibiotic resistance gene unfold attributable to manure utility on agricultural fields. Curr. Opin. Microbiol. 14, 236–243 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nikaido, H. Multidrug resistance in micro organism. Annu. Rev. Biochem. 78, 119–146 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, H. Okay. et al. Name of the wild: antibiotic resistance genes in pure environments. Nat. Rev. Microbiol. 8, 251–259 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schiwon, Okay. et al. Comparability of antibiotic resistance, biofilm formation and conjugative switch of Staphylococcus and Enterococcus Isolates from Worldwide House Station and Antarctic Analysis Station Concordia. Micro. Ecol. 65, 638–651 (2013).

    Article 
    CAS 

    Google Scholar 

  • Urbaniak, C. et al. Detection of antimicrobial resistance genes related to the Worldwide House Station environmental surfaces. Sci. Rep. 8, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • Will, W. R. & Frost, L. S. Hfq is a regulator of F-plasmid TraJ and TraM synthesis in Escherichia coli. J. Bacteriol. 188, 124–131 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lerner, A., Matthias, T. & Aminov, R. Potential results of horizontal gene change within the human intestine. Entrance. Immunol. 8, (2017).

  • Siddiqui, R., Akbar, N. & Khan, N. A. Intestine microbiome and human well being underneath the house setting. J. Appl. Microbiol. 130, 14–24 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Groussin, M. et al. Elevated charges of horizontal gene switch within the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghigo, J.-M. Pure conjugative plasmids induce bacterial biofilm growth. Nature 412, 442–445 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. Improvement and maturation of Escherichia coli Okay-12 biofilms. Mol. Microbiol. 48, 933–946 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reisner, A., Höller, B. M., Molin, S. & Zechner, E. L. Synergistic results in combined Escherichia coli biofilms: conjugative plasmid switch drives biofilm enlargement. J. Bacteriol. 188, 3582–3588 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gama, J. A. et al. Dominance between plasmids determines the extent of biofilm formation. Entrance. Microbiol. 11, 2070 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burmølle, M., Bahl, M. I., Jensen, L. B., Sørensen, S. J. & Hansen, L. H. Kind 3 fimbriae, encoded by the conjugative plasmid pOLA52, improve biofilm formation and switch frequencies in Enterobacteriaceae strains. Microbiol. (N. Y) 154, 187–195 (2008).

    Google Scholar 

  • Schroll, C., Barken, Okay. B., Krogfelt, Okay. A. & Struve, C. Position of kind 1 and sort 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10, 179 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaishampayan, A. & Grohmann, E. Multi-resistant biofilm-forming pathogens on the Worldwide House Station. J. Biosci. 44, 125 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ong, C.-L. Y. et al. Identification of kind 3 fimbriae in uropathogenic Escherichia coli reveals a task in biofilm formation. J. Bacteriol. 190, 1054–1063 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, P., Li, Y. & Xu, H. Markedly decreased development fee and biofilm formation capacity of Acinetobacter schindleri after a long-duration (64 days) spaceflight. Eur. Rev. Med. Pharmacol. Sci. 26, 4001–4015 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, B., Bai, P. & Wang, D. Progress habits and transcriptome profile evaluation of Proteus Mirabilis pressure underneath long- versus short-term simulated microgravity setting. Pol. J. Microbiol. 71, 161 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hausner, M. & Wuertz, S. Excessive charges of conjugation in bacterial biofilms as decided by quantitative in situ evaluation. Appl. Environ. Microbiol. 65, 3710–3713 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lécuyer, F. et al. Biofilm formation drives switch of the conjugative ingredient ICE Bs1 in Bacillus subtilis. mSphere 3, e00473–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C. & Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10, 3 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savage, V. J., Chopra, I. & ONeill, A. J. Staphylococcus aureus biofilms promote horizontal switch of antibiotic resistance. Antimicrob. Brokers Chemother. 57, 1968–1970 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trieu-Cuot, P., Carlier, C., Martin, P. & Courvalin, P. Plasmid switch by conjugation from Escherichia coli to Gram-positive micro organism. FEMS Microbiol. Lett. 48, 289–294 (1987).

    Article 
    CAS 

    Google Scholar 

  • Mazodier, P., Petter, R. & Thompson, C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171, 3583–3585 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamilton, T. A. et al. Environment friendly inter-species conjugative switch of a CRISPR nuclease for focused bacterial killing. Nat. Commun. 10, 4544 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominguez, W. & O’Sullivan, D. J. Growing an environment friendly and reproducible conjugation-based gene switch system for bifidobacteria. Microbiology 159, 328–338 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Samperio, S. et al. Conjugative DNA switch from E. coli to transformation-resistant Lactobacilli. Entrance. Microbiol. 12, 606629 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brumwell, S. L., Belois, Okay. D., van, Giguere, D. J., Edgell, D. R. & Karas, B. J. Conjugation-based genome engineering in Deinococcus radiodurans. https://doi.org/10.1101/2021.10.13.464295 (2021).

  • Heinemann, J. A. & Sprague, G. F. Bacterial conjugative plasmids mobilize DNA switch between micro organism and yeast. Nature 340, 205–209 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reuter, A. et al. Focused-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas methods obtain strain-specific antibacterial exercise. https://doi.org/10.1101/2020.10.12.335968 (2020).

  • Kiga, Okay. et al. Improvement of CRISPR-Cas13a-based antimicrobials able to sequence-specific killing of goal micro organism. Nat. Commun. 11, 2934 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Value, V. J. et al. Enterococcus faecalis CRISPR-Cas is a sturdy barrier to conjugative antibiotic resistance dissemination within the murine gut. https://doi.org/10.1101/312751 (2018).

  • Zhou, Y. et al. The kind I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumonia. Emerg. Microbes Infect. 9, 1011 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, N. Okay., Wooden, J. M., Karouia, F. & Venkateswaran, Okay. Succession and persistence of microbial communities and antimicrobial resistance genes related to Worldwide House Station environmental surfaces. Microbiome 6, 204 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bryan, N. C. et al. Genomic and useful characterization of Enterococcus faecalis isolates recovered from the Worldwide House Station and their potential for pathogenicity. Entrance. Microbiol. 11, 515319 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene switch in Staphylococci by focusing on DNA. Science 322, 1843–1845 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rauch, J. N. et al. A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic materials. J. Clin. Microbiol. 59, e02402–20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stahl-Rommel, S. et al. A CRISPR-based assay for the research of eukaryotic DNA restore onboard the Worldwide House Station. PLoS ONE 16, e0253403 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, R. L. et al. Design of artificial human intestine microbiome meeting and performance. https://doi.org/10.1101/2020.08.19.241315 (2020).

  • Wu, H., Moser, C., Wang, H.-Z., Høiby, N. & Music, Z.-J. Methods for combating bacterial biofilm infections. Int. J. Oral. Sci. 7, 1–7 (2014).

    Article 
    PubMed Central 

    Google Scholar 

  • Buchovec, I., Gricajeva, A., Kalėdienė, L. & Vitta, P. Antimicrobial photoinactivation method primarily based on pure brokers for management of micro organism biofilms in Spacecraft. Int. J. Mol. Sci. 21, 6932 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn, C. et al. Pure and oxidized copper supplies as potential antimicrobial surfaces for spaceflight actions. Astrobiology 17, 1183–1191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siems, Okay. et al. Testing laser-structured antimicrobial surfaces underneath house circumstances: the design of the ISS experiment BIOFILMS. Entrance. House Technol. 0, 14 (2022).

    Google Scholar 

  • Sobisch, L.-Y. et al. Biofilm forming antibiotic resistant Gram-positive pathogens remoted from surfaces on the Worldwide House Station. Entrance. Microbiol. 10, 543 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pipiya, S. O. et al. Engineering synthetic biodiversity of lantibiotics to increase chemical house of DNA-encoded antibiotics. Biochemistry 85, 1319–1334 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Walsh, D. J., Livinghouse, T., Goeres, D. M., Mettler, M. & Stewart, P. S. Antimicrobial exercise of naturally occurring phenols and derivatives in opposition to biofilm and Planktonic micro organism. Entrance. Chem. 7, 653 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francolini, I., Vuotto, C., Piozzi, A. & Donelli, G. Antifouling and antimicrobial biomaterials: an outline. APMIS 125, 392–417 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Goodband, S. J., Armstrong, S., Kusumaatmaja, H. & Vötchovsky, Okay. Impact of ageing on the construction and properties of mannequin liquid-infused surfaces. Langmuir 36, 3461–3470 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *